Borsuk Ulam in Combinatorics

abhi

1 Intro

Lovasz' original proof of the Kneser conjecture was the inspiration. Meta idea: use the nonexistence of a map from the "configuration space" to the "target space". At this point introduce: B^n , S^n , continuous functions, open set, closed set.

2 Statement and equivalent forms

The main version of the theorem:

Theorem 2.1 (Borsuk Ulam v1). For every map $f : S^n \to \mathbb{R}^n$, there is some $x \in S^n$ such that f(x) = f(-x).

Antipodal map: One that satisfies f(-x) = -f(x).

Theorem 2.2 (Borsuk Ulam v2). For every antipodal map $f : S^n \to S^{n-1}$, there is some x such that f(x) = 0.

Theorem 2.3 (Borsuk Ulam v3). *There is no antipodal map from* $S^n \to S^{n-1}$.

Theorem 2.4 (Borsuk Ulam v4). *There is no continuous map* $f : B^n \to S^{n-1}$ *that is antipodal on the boudary.*

Theorem 2.5 (Borsuk Ulam vC). For every cover of S^n by closed sets F_1, \ldots, F_{n+1} , there is some F_i with a pair of antipodal points.

Theorem 2.6 (Borsuk Ulam vO). For every cover of S^n by open sets F_1, \ldots, F_{n+1} , there is some F_i with a pair of antipodal points.

Another important theorem:

Theorem 2.7 (Brouwer Fixed Point). *Every map* $f : B^n \to B^n$ *has a fixed point* (f(x) = x).

Important: Generalise the open/closed thing. The argument is by induction on closed sets For all open sets U_i , pick a lebesgue number λ for the covering, pick balls of radius λ at every point, find an open cover. Let F_i be the closure of the balls in the cover in U_i . These F_i are closed and cover, hence the theorem.

Suppose it holds for t closed sets and you have t + 1. Fix some closed set F. If F has antipodes, done. If not, its diameter is $2 = \epsilon$. Let F' = all points at distance $\epsilon/2$ from F. This is open, and F' cannot contain antipodes by construction. We can apply the induction hypothesis now.

3 Kneser Conjecture

The Kneser graph $KG_{n,k}$ has vertex set $\binom{[n]}{k}$. Two vertices are adjacent if their intersection is empty. Conjecture: Chromatic number is n - 2k + 2 for $n \ge 2k - 1$.

First, these many colours are enough: For each vertex v, assign it the colour defined by min ((min i : i $\in v$), n - 2k + 2). If two vertices get the same colour less than n - 2k + 2, that element is common so no edge. If they are equal to n - 2k + 2, then all elements lie in $\{n - 2k + 2, n - 2k + 3, ..., n\}$ and there are only 2k - 1 such, so they intersect.

This is tight: Let d := n - 2k + 1. Pick a set of points $X \subset S^d$ in general position: no hyperplane through the center has more than d points. This is possible.

Let the vertex set of the graph be $\binom{x}{k}$. Suppose there is a colouring with d colours. Define sets $A_1, \ldots, A_d \subseteq S^d$ as follows. For an $x \in S^d$, look at the open half sphere centered at x. Consider all k tuples of elements in this half sphere. If there is a tuple with colour i, then $x \in A_i$. Let $A^{d+1} = S^d \setminus \bigcup A_i$.

The sets $A_1, \ldots A_d$ are open, last is closed. By borsuk ulam, antipodal y, -y points in some A_i . Suppose in A_{d+1} . That $y \in A_{d+1}$ implies that in its halfsphere, there are atmost k - 1 points of X. That $-y \in A_{d+1}$ implies that in its halfsphere, atmost k - 1 points of X. Therefore, there must be atleast n - 2k + 2 = d + 1 points in the "equator" of these two halfspheres. This contradicts the general position assumption. Suppose then $y, -y \in A_j$ with $j \leq d$. Then there is some k tuple of X with colour j in the halfsphere centered at y, and another tuple with colour j in the halfsphere centered at -y. These are disjoint, so the tuples are disjoint, so there is an edge between them, contradicts colouring.

4 Ham Sandwich

Given d objects in R^d with positive "volume" there is a hyperplane that divides every set in two.

Proof. Let A_1, \ldots, A_d be the sets. Consider the sphere S^d , and a point $u = (u_0, \ldots, u_d)$. If some u_1, \ldots, u_d is nonzero, then assign to u the halfspace in \mathbb{R}^d defined by $u_1x_1 + u_2x_2 + u_3x_3 + u_3x_4 + u_3x_3 + u_$

 $\dots + u_d x_d \leq u_0$. To $(1, 0, \dots, 0)$ just assign the halfspace than is the whole of \mathbb{R}^d , and to the opposite point assign the space ϕ .

Define function $f : S^d \to \mathbb{R}^d$ as sending the point u to the vector of volumes of each A_i in the halfspace corresponding to u. We must have f(y) = f(-y) for some y. Note that y cannot be (1, 0, ..., 0) since we know the function is not equal to that at the opposite point, so it must be a halfplane.

If we have more objects, use a hypersurface: a degree k hypersurface can bisect $\binom{k+n}{n}$ - 1 many objects.

More interesting, Ham sandwich for point sets. Let $A_1, \ldots, A_d \subset \mathbb{R}^d$ be finite point sets. Then there is a hyperplane that bisects them Here, bisects means that on each side there are atmost $\lfloor |A_i|/2 \rfloor$ points. If odd number of points say 2k + 1, then each side has atmost k points and atleast 1 on the hyperplane.

Proof. Idea is to replace each point in A_i by tiny balls.

First assume everything is in general position (no d+1 on a hyerplane) and no common points and all A_i are odd sized. Pick a small enough ϵ so balls of radius ϵ around each point do not intersect. Pick a bisecting hyperplane. This plane has to bisect atleast one ball from each A_i since there are odd number. If it bisects more than 1 from some A_i then more than d + 1 points on the hyerplane contradicting general position. So exactly one from each.

Next suppose odd cardinality but not general position. Then perturbation argument. For each η , perturb every point by atmost η so that they are in general position and pick the bisecting hyperplane h_{η} . Each hyperplane is a point in \mathbb{R}^{d+1} , given by $\langle a, x \rangle = b$. If we normalise so that a is always a unit vector, then the set of hyerplanes h_{η} is a bounded set, since for each of them b_{η} is bounded by say the diameter of all the A_i . So there is a converging subsequence that converses to point (p, q) or hyperplane $\langle p, x \rangle = q$. Consider sequence $\eta_1 \ge \eta_2 \ge \cdots$ that converges to 0 with hyerplanes converging to (p, q), call this hyperplane h. For a particular x, if it is one on side of h, say $\langle p, x \rangle > q$, then it is at distance δ from h. Then there is some η_j such that it is at distance $\delta/2$ from h_{η_j} and from all $h_{\eta_j'}$ with j' > j. So if there are k points are on one side of h, then starting from some η_j with j large enough, these k points are on one side of h_{η_j} . Since the h_{η_j} bisect, it must be that $k \leq \lfloor |A_i|/2 \rfloor$ and thus the h also bisect.

Finally, if there are even number of points, then just delete a point and make it odd and find h. If we add the point back, h will still bisect by definition. \Box

We can als get the following nice version: If the points are in general position, then there is a hyerplane than bisects with exactly $\lfloor |A_i|/2 \rfloor$ on each side, and atmost 1 from each A_i on the hyerplane.

5 Necklace Theorem

Simple consequence of the discrete ham sandwich.

Theorem 5.1 (Akiyama and Alon). Let $A_1, \ldots A_d \subset \mathbb{R}^d$ having n points each that are in general position. Think of each point in the union as being coloured by the colour i. Then we can partition the union into n many d tuples, with each tuple consisting of one point from each A_i , such that the convex hull of each tuple is disjoint.

In two dims: pick a set of n red and n blue points in the plane. You can match pairs of red and blue so that the lines joining the pairs do not intersect.

Proof. Induct on n. For n > 1 odd, pick hyerplane that bisects each A_i and that has has exactly one point of each colour. There is one d tuple on h, and then invoke the theorem on each side.

Necklace division. Open necklace, d types of stones, even number of each kind. How many cuts to divide. Easy to see d is neccessary: put all stones of type 1 first, then type 2 and so on. Also d is sufficient.

Proof. Note than the moment curve is a curve in \mathbb{R}^d parametrised by $t \to (t, t^2, ..., t^d)$. Call this function $\gamma(t)$. Property: Every hyerplane intersects the curve at atmost d points, and if it intersects at exactly d points then the curve crosses the hyerplane at each point of intersection.

Place the necklace along the moment curve. Let A_i be the set of all stones of type i. So we have

 $A_i = \{\gamma(k) | \text{the stone in position } k \text{ is of type } i \}$

By ham sandwich, there is a hyerplane bisecting. Since the type of each stone is even, the hyerplane itself contains no stones. Further it bisects at atmost d points on the curve. These are the required cuts. \Box