
Borsuk Ulam in Combinatorics

abhi

1 Intro

Lovasz’ original proof of the Kneser conjecture was the inspiration. Meta idea: use the
nonexistence of a map from the ”configuration space” to the ”target space”. At this point
introduce: Bn,Sn, continuous functions, open set, closed set.

2 Statement and equivalent forms

The main version of the theorem:

Theorem 2.1 (Borsuk Ulam v1). For every map f : Sn → Rn, there is some x ∈ Sn such that
f(x) = f(−x).

Antipodal map: One that satisfies f(−x) = −f(x).

Theorem 2.2 (Borsuk Ulam v2). For every antipodal map f : Sn → Sn−1, there is some x such
that f(x) = 0.

Theorem 2.3 (Borsuk Ulam v3). There is no antipodal map from Sn → Sn−1.

Theorem 2.4 (Borsuk Ulam v4). There is no continuous map f : Bn → Sn−1 that is antipodal
on the boudary.

Theorem 2.5 (Borsuk Ulam vC). For every cover of Sn by closed sets F1, . . . , Fn+1, there is some
Fi with a pair of antipodal points.

Theorem 2.6 (Borsuk Ulam vO). For every cover of Sn by open sets F1, . . . , Fn+1, there is some
Fi with a pair of antipodal points.

Another important theorem:

Theorem 2.7 (Brouwer Fixed Point). Every map f : Bn → Bn has a fixed point (f(x) = x).
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Important: Generalise the open/closed thing. The argument is by induction on closed
sets For all open sets Ui, pick a lebesgue number λ for the covering, pick balls of radius
λ at every point, find an open cover. Let Fi be the closure of the balls in the cover in Ui.
These Fi are closed and cover, hence the theorem.

Suppose it holds for t closed sets and you have t + 1. Fix some closed set F. If F has
antipodes, done. If not, its diameter is 2 = ε. Let F ′ = all points at distance ε/2 from F.
This is open, and F ′ cannot contain antipodes by construction. We can apply the induction
hypothesis now.

3 Kneser Conjecture

The Kneser graph KGn,k has vertex set
([n]
k

)
. Two vertices are adjacent if their intersection

is empty. Conjecture: Chromatic number is n− 2k+ 2 for n > 2k− 1.
First, these many colours are enough: For each vertex v, assign it the colour defined

by min ((min i : i ∈ v),n− 2k+ 2). If two vertices get the same colour less than n−2k+2,
that element is common so no edge. If they are equal to n− 2k+ 2, then all elements lie in
{n− 2k+ 2,n− 2k+ 3, . . . ,n} and there are only 2k− 1 such, so they intersect.

This is tight: Let d := n − 2k + 1. Pick a set of points X ⊂ Sd in general position: no
hyperplane through the center has more than d points. This is possible.

Let the vertex set of the graph be
(
X
k

)
. Suppose there is a colouring with d colours.

Define sets A1, . . . ,Ad ⊆ Sd as follows. For an x ∈ Sd, look at the open half sphere
centered at x. Consider all k tuples of elements in this half sphere. If there is a tuple with
colour i, then x ∈ Ai. Let Ad+1 = Sd \ ∪Ai.

The sets A1, . . .Ad are open, last is closed. By borsuk ulam, antipodal y,−y points in
some Ai. Suppose in Ad+1. That y ∈ Ad+1 implies that in its halfsphere, there are atmost
k− 1 points of X. That −y ∈ Ad+1 implies that in its halfsphere, atmost k− 1 points of X.
Therefore, there must be atleast n − 2k + 2 = d + 1 points in the ”equator” of these two
halfspheres. This contradicts the general position assumption. Suppose then y,−y ∈ Aj
with j 6 d. Then there is some k tuple of X with colour j in the halfsphere centered at y,
and another tuple with colour j in the halfsphere centered at −y. These are disjoint, so the
tuples are disjoint, so there is an edge between them, contradicts colouring.

4 Ham Sandwich

Given d objects in Rd with positive ”volume” there is a hyperplane that divides every set
in two.

Proof. Let A1, . . . ,Ad be the sets. Consider the sphere Sd, and a point u = (u0, . . . ,ud). If
some u1, . . . ,ud is nonzero, then assign to u the halfspace in Rd defined by u1x1 + u2x2 +
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· · · + udxd 6 u0. To (1, 0, . . . , 0) just assign the halfspace than is the whole of Rd, and to
the opposite point assign the space φ.

Define function f : Sd → Rd as sending the point u to the vector of volumes of eachAi
in the halfspace corresponding to u. We must have f(y) = f(−y) for some y. Note that y
cannot be (1, 0, . . . , 0) since we know the function is not equal to that at the opposite point,
so it must be a halfplane.

If we have more objects, use a hypersurface: a degree k hypersurface can bisect
(
k+n
n

)
−

1 many objects.

More interesting, Ham sandwich for point sets. Let A1, . . . ,Ad ⊂ Rd be finite point
sets. Then there is a hyperplane that bisects them Here, bisects means that on each side
there are atmost b|Ai| /2c points. If odd number of points say 2k + 1, then each side has
atmost k points and atleast 1 on the hyerplane.

Proof. Idea is to replace each point in Ai by tiny balls.
First assume everything is in general position (no d+1 on a hyerplane) and no common

points and all Ai are odd sized. Pick a small enough ε so balls of radius ε around each
point do not intersect. Pick a bisecting hyperplane. This plane has to bisect atleast one
ball from each Ai since there are odd number. If it bisects more than 1 from some Ai then
more than d + 1 points on the hyerplane contradicting general position. So exactly one
from each.

Next suppose odd cardinality but not general position. Then perturbation argument.
For each η, perturb every point by atmost η so that they are in general position and pick
the bisecting hyperplane hη. Each hyperplane is a point in Rd+1, given by 〈a, x〉 = b. If
we normalise so that a is always a unit vector, then the set of hyerplanes hη is a bounded
set, since for each of them bη is bounded by say the diameter of all the Ai. So there is a
converging subsequence that converses to point (p,q) or hyperplane 〈p, x〉 = q. Consider
sequence η1 > η2 > · · · that converges to 0 with hyerplanes converging to (p,q), call
this hyperplane h. For a particular x, if it is one on side of h, say 〈p, x〉 > q, then it is at
distance δ from h. Then there is some ηj such that it is at distance δ/2 from hηj and from
all hηj ′ with j ′ > j. So if there are k points from Ai on one side of h, then starting from
some ηj with j large enough, these k points are on one side of hηj . Since the hηj bisect, it
must be that k 6 b|Ai| /2c and thus the h also bisect.

Finally, if there are even number of points, then just delete a point and make it odd
and find h. If we add the point back, h will still bisect by definition.

We can als get the following nice version: If the points are in general position, then
there is a hyerplane than bisects with exactly b|Ai| /2c on each side, and atmost 1 from
each Ai on the hyerplane.
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5 Necklace Theorem

Simple consequence of the discrete ham sandwich.

Theorem 5.1 (Akiyama and Alon). Let A1, . . .Ad ⊂ Rd having n points each that are in
general position. Think of each point in the union as being coloured by the colour i. Then we can
partition the union into n many d tuples, with each tuple consisting of one point from each Ai,
such that the convex hull of each tuple is disjoint.

In two dims: pick a set of n red and n blue points in the plane. You can match pairs of
red and blue so that the lines joining the pairs do not intersect.

Proof. Induct on n. For n > 1 odd, pick hyerplane that bisects each Ai and that has has
exactly one point of each colour. There is one d tuple on h, and then invoke the theorem
on each side.

Necklace division. Open necklace, d types of stones, even number of each kind. How
many cuts to divide. Easy to see d is neccessary: put all stones of type 1 first, then type 2
and so on. Also d is sufficient.

Proof. Note than the moment curve is a curve in Rd parametrised by t → (t, t2, . . . , td).
Call this function γ(t). Property: Every hyerplane intersects the curve at atmost d points,
and if it intersects at exactly d points then the curve crosses the hyerplane at each point of
intersection.

Place the necklace along the moment curve. Let Ai be the set of all stones of type i. So
we have

Ai = {γ(k)|the stone in position k is of type i}

By ham sandwich, there is a hyerplane bisecting. Since the type of each stone is even,
the hyerplane itself contains no stones. Further it bisects at atmost d points on the curve.
These are the required cuts.
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