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Abstract

Checking for the existence of a common root of a set of polynomials is a funda-
mental problem in computer science, primarily since it affords reduction from
many other problems. It is easy to see for example that SAT, and therefore all
NP complete problems reduce to checking the existence of common roots. It is
therefore unlikely that this problem has an efficient algorithm.

In this thesis, we study this problem, and some related problems, in the
special case when the input polynomials have low transcendence degree. The
transcendence degree of a set of polynomials is the size of the largest subset of
them that do not satisfy any polynomial relationship. The case of low transcen-
dence degree generalizes the case of having fewer polynomials than variables.
In particular, the three problems we study are radical membership, effective
Nullstellensatz and transcendence degree computation. The radical member-
ship problem is to check, given polynomials f1, . . . , fm and a polynomial g,
whether some power of g belongs to the ideal generated by the polynomials fi.
By Hilbert’s Nullstellensatz, taking g = 1 in the above is equivalent to checking
for the existence of a common root of f1, . . . , fm. In the case when 1 is in the
ideal generated by f1, . . . , fm, it is natural to compute witnesses h1, . . . ,hm that
satisfy 1 =

∑
fihi. The effective Nullstellensatz gives degree upper bounds on

the hi that depend on m and the degree of the polynomials fi. The transcen-
dence degree problem is to compute, given a set of polynomials f1, . . . , fm what
their transcendence degree is. For each of these, we give bounds and algo-
rithms that depend on the transcendence degree of the polynomials f1, . . . , fm.

We also provide exposition of Hilbert’s Nullstellensatz and the Effective
Nullstellensatz. We also study the algebraic independence problem, and pro-
vide alternative proofs for many known results about the problem.
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Chapter 1

Introduction

Given a set of multivariate polynomials f1, . . . , fm, there is a natural certificate
for the existence of a common root of these polynomials, namely the root itself.
Hilbert’s Nullstellensatz [Kru50] is a fundamental theorem in algebraic geom-
etry that states that there exists a certificate for the non existence of a common
root, in the form of polynomials h1, . . . ,hm such that

∑
fihi = 1. These cer-

tificates are not efficient: every root can have exponential bit complexity and
every set of polynomials h1, . . . ,hm with the above property can have expo-
nential degree. It is therefore natural to ask if there are efficient certificates for
one or both of the above. In this thesis, we study the above problems in the
special case when the polynomials f1, . . . , fm have low transcendence degree.

The thesis is divided into seven chapters, including this one. All chapters
except chapter 6 are expositional. Chapter 6 is the main contribution of this
thesis, and is based on [GS20].

In chapter 2, we establish some notation that we will use for the rest of the
thesis, and also list some basic facts from field theory and algebraic geometry.

In chapter 3, we discuss effective versions of the hyperplane intersection
theorem and Noether normalization. We show that random hyperplanes inter-
sect varieties—both projective and affine—property with high probability. We
also provide a proof of the Noether normalization theorem, and what it means
in the algebraic geometric setting.

In chapter 4, we discuss the Nullstellensatz. We first provide a proof of the
classical Nullstellensatz. We then present a proof of an effective version of the
Nullstellensatz, which gives degree bounds on the certificates.

In chapter 5, we discuss the notion of transcendence degree and algebraic
independence. We state the algebraic independence problem, and provide al-
ternative proofs of some well known properties and theorems regarding alge-
braic independence.

In chapter 6, we show the existence of improved Nullstellensatz certificates,
radical membership algorithms, and transcendence degree computing algo-
rithms for polynomials with low transcendence degree. This chapter is the
main contribution of this thesis.
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Finally, in chapter 7 we provide a conclusion followed by some potential
next steps.

Given the range of topics discussed, we have deferred motivations and lit-
erature surveys of the above topics to the respective chapters.

2



Chapter 2

Preliminaries

We first establish some notation that we will use throughout this thesis. We
also state some basic facts from field theory and algebraic geometry that will
be useful.

2.1 Notation

• We use k to denote the underlying field of constants. This will generally
be the algebraic closure of Fp for some prime p that is either arbitrary or
clear from context.

• We use k[x] and k(x) respectively to denote the ring of polynomials with
coefficients from k with indeterminate x, and its field of fractions.

• We use vector notation to denote indexed sets of objects when the index-
ing set is clear: for example, we use x to denote variables x1, . . . , xn if the
number of variables is clear. We extend this vector notation greatly. For
example, if f1, . . . , fm are polynomials each in the same n variables and
a1, . . . ,an ∈ k then f(a) denotes the evaluations

(f1(a1, . . . ,an), f2(a1, . . . ,an), . . . , fm(a1, . . . ,an)).

If x is a set of n variables and m ∈ Nn is a vector of natural numbers then
xm denotes the monomial

∏
xmi

i .
• We use An and Pn respectively to denote the n dimensional affine and

projective spaces. We use Pn∞ to denote the hyperplane at infinity.
• Given a variety X, we use k[X] to denote its coordinate ring.

2.2 Algebra preliminaries

2.2.1 The polynomial identity lemma
We make extensive use of the following theorem that controls the number of
roots of multivariate polynomials. We refer to it as the polynomial identity
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lemma.

Lemma 2.2.1 (Polynomial identity lemma, [Sch80, Zip79, Ore22, DL78]). Let
f(x1, . . . , xn) be a polynomial of degree d over the field k. Let S be a subset of the field
k. Then the number of roots of f in S×· · ·×S is at most d|S|n−1. Equivalently, if points
a1, . . . ,an are sampled uniformly and independently from S then the probability that
f(a1, . . . ,an) is 0 is bounded above by d/|S|.

2.2.2 Field theory and commutative algebra preliminaries
We state some basic definitions from the theory of field extensions and com-
mutative algebra that we will use throughout this thesis.

Suppose K is a field extension of k. Given a subset S of K, we say that S is
algebraically independent if the elements of S do not satisfy any polynomial
equation with coefficients in k. The transcendence degree of the extension K/k
is the cardinality of the largest algebraically independent subset of K. If T is
such a subset, then by definition the extension K/k(T) is algebraic. All max-
imal algebraically independent subsets of K have the same cardinality. This
is akin to the notion of linear independence of vectors, and in fact the proof
is similar too. We refer the reader to [Lan02, Theorem 1.1, Chapter 8] for an
elementary proof in the case of interest here, which is that of extensions with
finite transcendental degree.

Suppose now that K/k is an algebraic extension. An element a ∈ K is called
separable if the minimal polynomial of a over k does not have repeated roots.
The extension is called separable if every element is separable. Suppose Ks
is the subfield of separable elements of K over k. Then every element a ∈ K
and a 6∈ Ks is such that ap

n ∈ Ks. Here p is the characteristic of the field.
Inseparability is a property that can only arise in fields of finite characteristic
(more specifically, only in fields that are not perfect).

All of the rings we consider will be unital and commutative. Suppose S/R
is an extension of rings. The ring S is called an integral extension of R if every
s ∈ S satisfies a monic polynomial with coefficients in R. If S/R is an integral
extension and S ′/S is another integral extension, then S ′/R is also an integral
extension.

2.3 Algebraic geometry preliminaries

Here we state some basic facts from algebraic geometry. An excellent refer-
ence for this material is [SR13]. Another excellent reference with emphasis on
computational aspects is [CLO07]. We use [Eis13] for the commutative algebra
facts.

2.3.1 Basic definitions
Let k be an algebraically closed field, and let A be the ring k[x1, . . . , xn]. The
ring k is Noetherian since it is a field, and by repeated applications of the
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Hilbert Basis Theorem [Eis13, Theorem 1.2, Chapter 1] we obtain that A is
Noetherian. This implies that every ideal of A is finitely generated.

Let f1, . . . , fm be a set of polynomials from A. We denote by V(f) the set of
common zeroes of f. More explicitly

V(f) = {(c1, . . . , cn) |∀i, fi(c) = 0}.

Any simultaneous root of f is a root of every polynomial in the ideal generated
by the f, and therefore V(f) = V(〈f〉). Since every ideal is finitely generated, ev-
ery V(I) for an arbitrary ideal Iwill be of the form V(g) where g is a generating
set for I. We will call V(f) the affine variety defined by f.

We think of V(·) as a map from the set of ideals of A to subsets of An. We
also have a natural map in the opposite direction: Given a subset U of An, we
define I(U) to be the set of all polynomials that vanish on every element of u.
More explicitly,

I(U) = {f ∈ A |∀u ∈ U, f(u) = 0}.

The maps I(·) and V(·) are inclusion reversing. For any variety V we have
V(I(V)) = V . For every ideal I we have I(V(I)) =

√
I. This second statement is

one version of the Nullstellensatz, and will be proved in chapter 4.

Zariski topology

The n dimensional affine space An can be given a topology where the closed
sets are exactly the zerosets of a finite number of polynomials. This topology
is called the Zariski topology. Given a variety V = V(I), it is irreducible in
the Zariski topology if and only if I is a prime ideal. The Zariski topology
in a Noetherian topological space, which means that every descending chain
of closed subsets stabilizes. This follows easily by noting that a descending
chain of closed subsets corresponds to an ascending chain of ideals. As a con-
sequence of this, every closed subset can be written uniquely as the union of
irreducible closed sets, none containing another.

Suppose f is a polynomial. The set of points given by f 6= 0 is an open set.
The polynomial identity lemma stated above essentially states that given an
open set of this form, a point chosen at random lies in this open set with high
probability.

Coordinate rings

Given a variety V ⊆ An corresponding to ideal I, the ring k[x1, . . . , xn]/I is
called the coordinate ring of I. We denote it by k[V]. It consists of polynomial
functions on V , that is, functions V → k that are given by polynomials. We
have k[An] = k[x1, . . . , xn]. In the general case, x1, . . . , xn generate k[X] as an
algebra, and we call these the coordinate functions on X.

Suppose V is irreducible. Then I is prime, and k[x1, . . . , xn]/I is a domain.
The field of fractions of this domain is called the function field of V , and is
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denoted by k(V). It consists of functions on V that are defined on some open
subset of V .

Polynomial maps

Suppose X, Y are varieties in An,Am respectively. A map φ : X → Y is called a
regular map (or polynomial map) if each coordinate function φi of φ is an ele-
ment of k[X]. Rephrasing, the map is called regular if there exists φ1, . . . ,φm ∈
k[X] such that for every point (a1, . . . ,an) in Xwe have

φ(a1, . . . ,an) = (φ1(a1, . . . ,an), . . . ,φm(a1, . . . ,an)).

Polynomial maps are continuous in the Zariski topology. Given a point y ∈ Y,
the set φ−1(y) is called the fibre of y under φ, or just the fibre of y if φ is clear
from context. Since points are closed in the Zariski topology, and polynomial
maps are continuous, the fibre of any point is a variety.

Given a polynomial map φ : X → Y, there is an induced map φ∗ : k[Y] →
k[X] that takes f ∈ k[Y] to f ◦ φ ∈ K[X]. This map is a ring homomorphism.
Alternatively, given a ring homomorphism ψ : k[Y] → k[X], there exists a map
ψ∗ : X → Y such that ψ = (ψ∗)∗. This map is defined by the coordinate
functions ψ∗i = ψ(yi), where yi is the ith coordinate function of the ambient
space Am of Y (strictly speaking, the image of the coordinate function in k[Y]).

Suppose φ : X → Y is a polynomial map. The image φ(X) might not be
a variety. We use φ(X) to denote the Zariski closure of the image. This is the
intersection of all closed sets containing φ(X).

If the map is such that φ(X) = Y, then the map is called dense. Although
a dense map is not surjective, every polynomial that vanishes on the image of
a dense map will vanish on the entire codomain. If the map φ is dense, then
the induced map φ∗ is an injection. To see this, suppose we have φ∗(f) = 0
for some f ∈ k[Y]. Then φ∗(f) vanishes on every point in X, and therefore f
vanishes on every point in φ(X). Since the map is dense, f vanishes on every
point in Y whence f = 0 in k[Y].

Projective varieties

Let Pn be the quotient of the space An+1 \{0}, where every line through the ori-
gin is identified. In other words, elements of Pn are n+ 1 tuples (x0, . . . , xn) of
elements of k, with at least one xi nonzero, and the equivalence (x0, . . . , xn) =
(λx0, . . . , λxn) for every nonzero λ ∈ k. Given a polynomial in n + 1 variables,
we do not get a well defined map on Pn since polynomial functions are not
scale invariant. However, given a homogeneous polynomial, the zeroset of the
polynomial is a well defined subset of Pn. We can give Pn a topology where
the closed sets are exactly the zerosets of a finite number of homogeneous poly-
nomials.

Given the n-dimensional projective space Pn, there is a copy of An embed-
ded in it, namely the set of points of Pn of the form (1, x1, . . . , xn). We call this
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an affine chart. The complement of this set, namely the set of points of the form
(0, x1, . . . , xn) is a closed linear subspace of Pn given by x0 = 0, and is called
the hyperplane an infinity. Suppose we have an affine variety X. This set X is
subset of Pn via the above inclusion of An into Pn. Let Xp be the closure of this
set in the Zariski topology of Pn. This set is called the projective closure of X.

There exists an ideal variety correspondence in the projective case which is
similar to the one discussed above. There also exists notions of function fields
for projective varieties. These constructions are more involved than their affine
counterparts, and therefore we do not present them here.

The advantage of projective varieties is that they behave better with respect
to intersections. Many of our arguments will therefore involve starting with an
affine variety, considering its projective closure, studying intersections in the
projective closure and deducing properties of the original affine variety.

2.3.2 The dimension and degree of a variety

Dimension

To every affine variety we can assign a dimension. It seems natural to want the
dimension of An to be n, and the dimension of an affine subspace 1 to be equal
to the linear algebraic dimension of the subspace. There are more motivations
for the following definition of dimension which we do not provide here.

Suppose X is an irreducible affine variety. As discussed above, k[X] is a
domain, and therefore k(X) is a field extension of X. We define the dimension
of X to be equal to the transcendence degree of the extension k(X)/k. Suppose
Y is an arbitrary affine variety. As discussed above, we can write Y uniquely
as a union of irreducible varieties. We define the dimension of Y to be the
maximum of the dimensions of these irreducible varieties.

We can alternatively define the dimension as follows. Let X be an irre-
ducible variety. Consider chains of irreducible varieties of the form

∅ 6= X0 ( X1 ( · · · ( Xn = X.

We define the dimension of X to be n if the above is a maximal chain of irre-
ducible varieties. Given any chain of shorter length, it can always be refined
to a chain of length n. This definition is very similar to the definition of linear
algebraic dimension of affine spaces. In that setting, given a vector space of
dimension n, the only vector spaces that it strictly contains are those of dimen-
sion n− 1. The refinement statement also holds.

Note that the second definition applies directly to projective varieties, while
the first definition depends on the function field, which we have not defined
here. For a projective varietyW the intersectionW ∩An—where An is consid-
ered as a subset of Pn as discussed above—is an affine variety, and the dimen-
sion of W matches the dimension of this affine variety. It also holds that the

1Here, by affine subspace we mean a translate of an linear subspace of An when it is treated as
a k-vector space with origin 0.

7



dimension of the projective closure of an affine variety is equal to the dimen-
sion of the original variety.

There is a third definition of dimension based on the Hilbert polynomial
of the coordinate ring of the variety, which we do not discuss here. A funda-
mental theorem in dimension theory is that these definitions are all equivalent.
The proof of this fact is beyond the scope of the thesis, and can be found in the
mentioned references.

Given a variety Y ⊆ X with dimX = n and dim Y = m, we define the
codimension of Y in X to be n−m. This is denoted by codimX Y. When X is not
explicitly mentioned, we assume that X is the ambient space in which Y lies.

A hypersurface in An is a variety defined by a single polynomial. The vari-
ety is irreducible if and only if the polynomial is. Every irreducible component
of a hypersurface has codimension 1. This is similar to the notion of hyper-
planes.

We now study how the dimension behaves with the intersection of vari-
eties. Consider the linear algebra case. Suppose we had a linear subspace
L, and a hyperplane H. Then the dimension of L ∩ H can be either dimL or
dimL − 1. The first case only occurs when L is contained in H. If not, then the
second case occurs. If we consider affine subspaces, then there is a third possi-
bility, namely thatH∩L = ∅. The linear algebraic dimension therefore either re-
mains the same, or drops by exactly 1 when the intersection is nonempty. In our
setting, affine varieties behave like affine subspaces: intersection of an affine
variety with a hypersurface reduces the dimension by at most 1, as long as
the intersection is nonempty. Projective varieties behave like linear subspaces:
intersections of projective varieties and hypersurfaces are always nonempty
(unless the projective variety has dimension 0), and therefore the intersection
reduces the dimension by at most 1. We state the above, and some corollaries
of the above as theorems. These will be used repeatedly throughout this thesis.

Theorem 2.3.1 ([SR13, Cor 1.13, Section 6, Chapter 1]). Suppose W is an irre-
ducible projective variety, and H is a hypersurface that does not contain W. Then
every component of W ∩ H has dimension dimW − 1. In particular, if dimW > 1,
then the intersection is nonempty.

Suppose X is an irreducible affine variety and H is a hypersurface that does not
contain X. Then every nonempty component of X ∩H has dimension dimX− 1.

We say that a hyperplane intersects a variety properly if the dimension
drops by exactly 1. We can repeatedly apply the above theorem to obtain the
following corollary.

Corollary 2.3.2 ([SR13, Cor 1.14, Section 6, Chapter 1]). Suppose W is an irre-
ducible projective variety, and Z ⊂ W is the set of zeroes of m homogeneous polyno-
mials onW. Then every component of Z has dimension at least dimW −m.

Suppose X is an irreducible affine variety and Y ⊆ X is the set of common zeroes
of m polynomials on X. Then every nonempty component of Y has dimension at least
dimX−m.
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Finally, we have the following corollary about the intersection of two vari-
eties. It follows by applying the above to the diagonal Pn × Pn, although we
omit the proof.

Theorem 2.3.3 ([SR13, Theorem 1.24, Section 6, Chapter 1]). Suppose W,Z are
irreducible projective varieties in Pn of dimensions m1,m2. Then every component of
W ∩ Z has dimension at leastm1 +m2 − n.

Suppose X, Y are irreducible affine varieties in An of dimensions m1,m2. Then
every nonempty component of X ∩ Y has dimension at leastm1 +m2 − n.

We say X and Y intersect properly if equality holds in the above.
The final thing we discuss in this chapter is the fibre dimension theorem. It

states that the fibres of a surjective have dimension greater than or equal to the
difference of the dimensions of the domain and codomain. This statement also
holds in the linear algebraic setting: the dimension of every fibre of a surjective
map is exactly equal to the dimension of the kernel of the map, which is the
difference in the dimension of the domain and codomain.

Theorem 2.3.4 ([SR13, Theorem 1.25, Section 6, Chapter 1]). Let φ : X→ Y be a
polynomial map. Let n,m denote the dimensions of X and Y respectively, and assume
that φ is surjective. Then n > m. Further,

1. For every b ∈ Y, every component of the fibre φ−1(b) has dimension at least
n−m.

2. There exists an open set U of points b ∈ Y such that dimφ−1(b) = n −m for
every b ∈ U.

We provide a proof sketch for this result in the special case when Y = An.
In our applications, we will require that appropriately sampled random points
satisfy the second item above, and therefore we need some control over which
points have that property, which we also do. Also note that the above state-
ment holds if we replace surjective by dominant, in which case the first item is
satisfied by every point with a nonempty fibre, and the other statements holds
as is.

Proof sketch for a special case of Theorem 2.3.4. Since φ is a surjective map, the in-
duced map φ∗ : k[Y] → k[X] is injective. The statement n > m holds from the
fact that trdeg(k(Y)) 6 trdeg(k(X)), which is clear from the above inclusion of
φ∗(k[Y]) in k[X].

Now let Y = Am, and let y be an arbitrary point in Y. The point b is defined
in Y by m equations, namely y1 = b1, . . . ,ym = bm, where yi are the coordi-
nate functions of Am. 2 The fibre in X is therefore defined by the equations
φ1 = b1, . . . ,φm = bm, where φ1, . . . ,φm are the coordinate functions of φi.
By Corollary 2.3.2, every nonempty component of the fibre has dimension at

2When Y is an arbitrary variety, it is not always true that a point is fixed by dimension many
equations, and we have to pass to open subsets.
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least n −m. Finally, that the fibre is nonempty follows from the fact that φ is
surjective. 3

We now prove the second item. The ring k[Y] is generated by m alge-
braically independent elements y1, . . . ,ym. Underφ∗, these map toφ1, . . . ,φm,
whence these are algebraically independent elements of k[X]. The transcen-
dence degree of k(X) is n. Let x1, . . . , xn be a transcendental basis for k(X)
ordered so that φ1, . . . ,φm, xm+1, . . . , xn are algebraically independent. Let Ai
denote the annihilator of xi,φ1, . . . ,φm, xm+1, . . . , xn, for i = 1, . . . ,m.

Now let b be a point in Y, and consider its fibre φ−1(b). Let W be an irre-
ducible component of its fibre. The ring k[W] is generated by x1, . . . , xn. Sup-
pose b is such that Ai(xi,φ1(b), . . . ,φm(b), xm+1, . . . , xn) is nonzero for every
i. Then in k[W], each xi for i = 1, . . . ,m depends algebraically on xm+1, . . . , xn.
This shows that the transcendence degree of k[W], and therefore the dimension
of W is at most n −m. Combined with item 1 in the theorem, it shows that W
has dimension exactly n −m. Finally note that if the Ai are nonzero after spe-
cialization, then the above relationships fold for every component of the fibre,
whence the fibre itself has dimensionW.

We therefore just have to prove that the set of points b in Y such that the
polynomials Ai(xi,φ1(b), . . . ,φm(b), xm+1, . . . , xn) are nonzero form an open
set. For this, we look at Ai as a polynomial in xi, . . . , xm+1, . . . , xn with coef-
ficients in φi, and let A ′i be the highest degree coefficients. It suffices that A ′i,
which is now a polynomial in k[Y], is nonzero for every i for the above to hold.
Therefore, we can pick U to be the complement of the unions of the zerosets of
A ′i, which is an open set.

Degree

We now define the degree of a variety. This is a far more involved notion
than the dimension, and therefore we just state the definition and theorem we
require. The following definition is from [Hei83]. For an irreducible affine
variety X ⊆ An of dimension r we define its degree to be the supremum of
|X ∩H|, whereH is an affine subspace of dimension n−r such that dimX∩H =
0. It holds that a general linear subspace attains this supremum. That the
supremum is finite follows from the facts that it is a variety and hence has an
irreducible decomposition. We use degX to denote the degree of X.

Suppose Y is an arbitrary variety, with irreducible decomposition ∪Yi with
no Yi containing another. Then we define the degree of Y to be the sum of the
degrees of Yi. It no longer holds that this is cardinality of the intersection of Y
with a general affine subspace of dimension n− dim Y, unless every Yi has the
same dimension as Y.

We note that the above definition of the degree of a variety is different from
that in the algebraic geometry literature. In the latter, they extend the first
definition to every variety, and as noted above, these match only if every com-
ponent of the variety has the same dimension.

3The remark about dominant maps is clear, and the same proof works, only changing the last
sentence.
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The degree of a hypersurfaces matches the degree of the polynomial that
defines it. We also have the following theorem that controls the degree of the
intersection of two varieties. We refer to it as Bézout’s Theorem.

Theorem 2.3.5 (Bézout’s Theorem, [Hei83, Theorem 1]). Suppose X and Y are
varieties. Then degX ∩ Y 6 degX× deg Y.

Finally, the degree of the projective closure of a variety is the same as the
degree of the original variety.

11



Chapter 3

Hyperplane intersection and
Noether Normalization

Given a variety of dimension r, intersecting it with a hyperplane chosen ran-
domly reduces the dimension by 1. The set of hyperplanes that do not have this
property form a subvariety in the space of all hyperplanes. In order to apply
this result, we have to get bounds on the bad set of hyperplanes. We do this in
the first part of this chapter. In the second part, we discuss Noether normaliza-
tion, which is a fundamental result from commutative algebra and algebraic
geometry. We will state some basic results about finite maps that will be useful
in later chapters. We then use results from the first part to get bounds on the
projections that are not Noether normalizing. All of the results presented in
this chapter are folklore.

3.1 Hyperplane intersection

We prove the result for both projective and affine varieties. In the case of pro-
jective varieties, the intersection theorem guarantees that the intersection of a
hyperplane with a variety of dimension at least 1 is nonempty. Proving then
that a random hyperplane reduces the dimension by exactly one reduces only
to proving that the dimension does not remain the same. When dealing with
affine varieties, a new complication arises. The intersection with a hyperplane
might be empty: for example consider the intersection of two parallel hyper-
planes whose defining equations have different constant terms. We must there-
fore also bound the probability of this event happening. We will first prove the
projective case, and use it to prove the affine case.

We formally state the first lemma that we will prove.

Lemma 3.1.1. Let V ⊆ Pn be a projective variety of degree D. Let S be a subset of
the field k that does not contain 0. Let h =

∑n
i=0 cixi be a linear equation, with each

coefficient ci picked independently and independently from the subset S, and let H be
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the variety V(h). Then with probability at least 1 −D/|S| we have that dimV ∩H =
dimV − 1.

Proof of Lemma 3.1.1. Let V = ∪di=1 be the decomposition of V into irreducible
components. Since degV =

∑d
i=1 degVi and degVi > 1 for each i, we have

d 6 D. Also pick a point pi from each component Vi.
By the intersection theorem (Theorem 2.3.1), for a fixed irreducible compo-

nent Vj, the intersection Vj ∩ H has dimension Vj − 1 unless Vj ⊆ H in which
case dimVj ∩H = dimVj. The event Vj ⊆ H implies in particular that pj ∈ H.
The probability that pj 6∈ H is at least 1/|S|. To see this, suppose (pj)j′ is the last
nonzero coordinate of pj. Then for any setting of all the ci other than i = j ′,
there is at most one value of cj′ that makes

∑
ci(pj)i = 0. Therefore, the prob-

ability that Vj ⊆ H is bounded above by 1/|S|.
To complete the proof, we use the union bound. The condition that for

every i the intersection Vi∩H has dimension one less than that of Vi guarantees
that the intersection V ∩H has dimension one less than that of V . By the union
bound, the probability that for some i we have dimVi ∩H = dimVi is at most
d/|S|, whence with probability alt east 1 − d/|S| we have that dimV ∩ H =
dimV − 1. The proof is completed by using the initial observation that k 6
D.

In most of our applications, the degreeDwill be at most single exponential
in the input size. We can therefore sample from subsets of size O(D) in poly-
nomial time, and still guarantee that the intersections behave as expected with
high probability.

We now state and prove the affine case.

Lemma 3.1.2. Let V ⊆ An be an affine variety of degree D. Let S be a subset of the
field k that does not contain 0. Let h = c0 +

∑n
i=1 ci be a linear equation, with each

coefficient ci picked uniformly and independently from the subset S, and let H be the
variety V(h). Then with probability at least 1 − 2D/|S| we have that dimV ∩ H =
dimV − 1.

As stated before, the difficulty arises in ensuring that the intersection is
nonempty. In order to do this, we consider the projective closures of the va-
rieties involved, and bound the probability that the intersection occurs in the
hyperplane at infinity.

Proof of Lemma 3.1.2. Let Vp be the projective closure of V , and Hp be the pro-
jective closure of H. The variety Hp is defined by the equation

∑n
i=1 cixi = 0.

We have degV = degVp and dimV = dimVp.
By the intersection theorem (Theorem 2.3.1), the intersection Vp∩Hp is non

empty (unless dimV = 0). Therefore, V ∩ H = ∅ implies that the intersection
Vp ∩ Hp is contained in the hyperplane at infinity P∞

n . In order for the event
dimV ∩H = dimV − 1 to hold, it is therefore sufficient that the following two
conditions hold:

• dimVp ∩Hp = dimVp − 1.

13



• Vp ∩Hp 6⊆ Pn∞ unless Vp ∩Hp = ∅.

All of the coefficients c0, . . . , cn were chosen randomly from S, and we are
therefore in the setting of Lemma 3.1.1. By applying the lemma to Vp and
Hp, we get that the first condition holds with probability at least 1 −D/|S|.

We now prove that if the first condition holds, then the second condition
also holds with probability 1 − D/|S|. Since no component of Vp is contained
in Pn∞, the variety Vp ∩ Pn∞ has dimension dimVp − 1. By Bézout’s theorem,
degVp ∩ Pn∞ 6 D. We can therefore apply Lemma 3.1.1 to the variety Vp ∩ P∞

n

andHp to get that with probability at least 1−D/|S| the intersectionVp∩Pn∞∩Hp
has dimension dimVp ∩ Pn∞ − 1 = dimVp − 2. If this is the case then Vp ∩Hp
cannot be a subset of Pn∞, since if it were, then we would have Vp ∩Hp ∩ Pn∞ =
Vp ∩ Hp, and the latter has dimension dimV − 1. Therefore, with probability
at least 1 −D/|S| we have that Vp ∩Hp 6( Pn∞.

A union bound on the two conditions completes the proof of the lemma.

In our applications, we will frequently use the above lemma iteratively to
reduce the dimension of a variety to 0. It is clear from the above lemmas that if
a variety V has dimension r, then intersecting V with rmany random linear hy-
perplanes will achieve this with high probability. We will however sometimes
require that the intersecting hyperplanes have some structure. In particular, we
will require that only the first hyperplane depends on x1, only the first two de-
pend on x2, and so on. In the following lemmas we prove that the intersection
will still behave as expected.

Lemma 3.1.3. Let V ⊆ Pn be a projective variety of dimension r and degree D. Let
S be a subset of k that does not contain 0. Let h be a linear form that depends only on
n − r + 1 variables, and let H be the hyperplane it defines. If the coefficients of each
variable is picked uniformly and independently from S then with probability at least
1 −D/|S| we have dimV ∩H = dimV − 1.

LetW ⊆ An is an affine variety of dimension r > 1 and degreeD. Let ` be a linear
equation that depends on n − r + 1 variables, and let L be the hyperplane it defines.
If the coefficients of each variable is picked uniformly and independently from S then
with probability at least 1 − 2D/|S| we have dimW ∩ L = dimW − 1. If r = 0, then
` must depend on all the variables, and have a constant term.

The following examples show that this is essentially tight, that we cannot
always pick a hyperplane whose equation has fewer nonzero coefficients. Sup-
pose V is the projective variety in n dimensions defined by x0 = x1 = x2 = 0.
This variety has dimension n − 3. Any hyperplane of the form a0x0 + a1x1 +
a2x2 = 0 always contains V , irrespective of the ai. Therefore, such a hyper-
plane can never property intersect V . We emphasize that the above is a worst
case statement. If instead we picked an equation of the form a2x2 + a3x3 +
a4x4 = 0 then it is possible to get proper intersection. In the affine case, we
must pick n − r + 1 coefficients, not including the constant term. This ensures
that the intersection on the hyperplane at infinity is proper, which was essen-
tial in the proof of Lemma 3.1.2. For example, consider the variety W defined
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by x1 = · · · = xn−2 = 0. This has dimension 2. If we define ` = b0 +
∑n−2
i=1 bixi,

then the intersection of W and L is empty (if b0 6= 0) or not proper (if b0 = 0).
For the statement about r = 0, assume that W = 0. Then if ` does not have a
constant term, the intersection will never be proper. We now prove the lemma.

Proof of Lemma 3.1.3. This proof is similar to the proofs of Lemma 3.1.1 and
Lemma 3.1.2, and we only focus on the differences here. We first prove the
projective case. Assume without loss of generality that x0, x1, . . . , xn−r are the
n − r + 1 variables that h depends on, that is, h =

∑n−r
i=0 cixi. Let V = ∪di=1Vi

be the irreducible decomposition. In the proof of Lemma 3.1.1, the hyperplane
properly intersected every Vi, which ensured that the dimension of V drops by
1. It is sufficient however that the hyperplane property intersect all of the com-
ponents of V that have dimension r. If this happens, even if the intersection
with a lower dimension component is non proper, the intersection with V will
still be. We can therefore drop all of the lower dimensional components from
the above union, and assume that V1, . . . ,Vk are the irreducible components of
V of dimension r. The bound d 6 D clearly still holds.

We now want to pick a point pi from each component. It might happen
however that the first n − r + 1 coordinates of pi are all zero. If this is the
case, then the previous proof fails, since h(pi) = 0 irrespective of the coeffi-
cients. The proof of Lemma 3.1.1 fails since it involves picking the coefficient
cj′ corresponding to a nonzero coordinate of pi. Therefore, we want to en-
sure that we pick pi such that not all of the first n − r + 1 coordinates are
zero. Fix a component Vj, and suppose that every pj ∈ Vj has all of the first
n−r+1 coordinates zero. Then Vj would be contained in the subspace defined
by x0 = x1 = · · · = xn−r = 0. But this subspace has dimension r− 1, whence Vj
would have dimension at most r − 1. This contradicts the assumption that Vj
is a component of dimension r.

Once such pi are picked from each component, the same arguments as in
the proof of Lemma 3.1.1 work, and we get the required result.

For the affine case, we have two sufficient conditions for the intersection
to be proper. The first condition is that Lp intersects Wp properly. The sec-
ond condition is that Lp ∩ Pn∞ intersects Wp ∩ Pn∞ properly. In the proof of
Lemma 3.1.2, these were ensured by invoking Lemma 3.1.1 twice. In order to
prove the affine case of this lemma, we follow the same proof, and replace in-
vocations of Lemma 3.1.1 with the projective version of this lemma instead. All
we have to show is that the assumptions are satisfied.

The defining equation of Lp is the homogenization of `, and the equation
of Lp ∩ Pn∞ is the degree 1 part of `. For the first condition we are intersecting
Wp which has dimension r, and hence we require the homogenization of ` to
depend on n + r − 1 variables. For the second condition we are intersecting
withWp ∩Pn∞. The underlying space here is Pn−1∞ , which has dimension n− 1.
We therefore require the degree 1 part of ` to depend on (n− 1) − (r− 1) + 1 =
n − r + 1 variables. Both these requirements are satisfied by the assumption.
This completes the proof.
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We now give a simple corollary of the above lemma. The corollary basically
states that we can repeatedly apply the above lemma r times to a variety of
dimension r to obtain a variety of dimension 0. The corollary also states that r+
1 intersections results in the empty variety. This last statement can alternatively
be seen as the fact that a random linear space of dimension n − r − 1 avoids
a variety of dimension r. While the proof of this corollary is obvious, we state
it here so we can easily invoke the result later on, instead of having to invoke
one of the previous lemmas multiple times inductively.

Corollary 3.1.4. Let V be a projective variety of dimension r and degreeD. Let S be a
subset of k not containing 0. Let h1, . . . ,hr+1 be linear forms such that hi depends on
n+ 2− i variables, and each coefficient is picked uniformly and independently from S.
Let Hi be the hyperplane defined by hi. Then the intersections V ∩ H2 ∩ · · · ∩ Hr+1
has dimension 0 with probability at least 1 − rD/|S|. Further, the intersections V ∩
H1 ∩ · · · ∩Hr+1 is empty with probability at least 1 − (r+ 1)D/|S|.

Let W be an affine variety of dimension r and degree D. Let `1, . . . , `r+1 be lin-
ear forms such that `i depends on n + 2 − i variables (except `1, which depends on
n variables and has a constant term), and each coefficient is picked uniformly and in-
dependently from S. Let Li be the hyperplane defined by `i. Then the intersections
W∩L2∩· · ·∩Lr+1 has dimension 0 with probability at least 1−2rD/|S|. Further, the
intersectionsW ∩L1 ∩ · · · ∩Lr+1 is empty with probability at least 1− 2(r+ 1)D/|S|.

Proof of Corollary 3.1.4. The proof of both the projective and affine versions es-
sentially follows from the repeated application of Lemma 3.1.3. In order to
ensure the assumptions, we first intersect V (resp. W) with Hr+1 (resp. Lr+1),
then Hr (resp. Lr) and so on. In both cases, we use Bézout’s theorem after each
intersection to guarantee that the variety obtained after intersecting with Hi
has degree at most D. The lower bound on the probabilities are obtained by a
union bound on the failure of each of the intersections.

Throughout this section, our model for random affine subspaces was to
pick defining equations uniformly and independently, and considering their
zerosets. In some places, we will have to consider a slightly different model.
Suppose we have a map from An−r to An with linear coordinate functions.
The image of this map is a linear subspace of An of dimension at most n − r.
If the coordinate functions are picked randomly, then the image is a random
subspace. We show that given a variety of dimension r and degree D, with
high probability the image of such a map will properly intersect V . We will
require the statement only for the case of affine varieties, but we prove it both
for the projective case and the affine case. As was the case before, we will use
the former to prove the latter.

Lemma 3.1.5. Suppose V is a projective variety of degreeD and dimension r. Suppose
ψ0, . . . ,ψn are linear homogeneous polynomials in z0, z1, . . . , zm with each coefficient
picked uniformly and independently from a subset S of k. Let ψ be the linear map from
Pm to Pn with coordinate functions ψi, and let H be its image. Then with probability
at least 1 − n3D/|S| we have that the above map is well defined, dimH = n − r, and
dimH ∩ V = 0.
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Proof of Lemma 3.1.5. Suppose eachψi is of the form
∑n−r
j=0 ai,jzj. Thatψ is well

defined requires this map to be injective (we cannot have anything other than
0 mapping to 0, since this point is not part of Pn). This requires that the matrix
Aij = ai,j has full rank. Fixing any submatrix of size (n − r) × (n − r), its
determinant is a polynomial in aij of degree n− r. By the polynomial identity
lemma, with probability at least 1−(n− r)/|S| this determinant is nonzero, the
map is well defined and dimH = n− r.

Now suppose we actually pick ψ0, . . . ,ψn such that each of them is a ho-
mogeneous equation in n + 1 variables z0, . . . , zn. Let Ψm for m = n − r, . . . ,n
denote the restriction of the map ψ : Pn → Pn to the space defined by zm+1 =
· · · = zn = 0. By definition the original map that we started with is Ψn−r, after
identifying Pm with the subspace zn−r+1 = · · · = zn = 0. Let Lm denote the
image of Ψm. By the same argument as above, each Lm has dimension m with
probability at least 1−m/|S|. We have Ln = Pn, and therefore Ln ∩V = V , and
dimLn ∩ V = n. We will now show that dimLm−1 ∩ V = dimLm ∩ V − 1 for
m = n − r + 1,n − r + 2, . . . ,n with high probability. This, combined with the
above statement and a union bound will give us our desired result.

Let W := Lm ∩ V . By Bézout’s theorem we have degW 6 D. Let W =
∪di=1Wi be the irreducible decomposition of W, and let pi be a point in Wi.
Each pi lies in Lm. The subspace Lm−1 is a linear subspace of Lm. If we can
show that pi is not in Lm−1 then the hyperplane defined by Lm−1 properly in-
tersectsWi, using the same arguments as in the proof of Lemma 3.1.1. The con-
dition that pi is not in Lm−1 is equivalent to the condition that the coordinate
vector of point pi depends linearly on the firstm columns ofA. By considering
a minor and applying the polynomial identity lemma, this happens with prob-
ability at most (n−m+ 1)/|S|. The probability that it does not happen for any
pi is at least 1 − (n −m)D/|S| by the union bound. If this happens, we have
dimLm−1 ∩ V = dimLm ∩ V − 1 as required.

We can now take a union bound over the above events for all m. With
probability at least 1 − n3D/|S| therefore we have dimH ∩ V = 0. 1

We can now prove a similar statement for affine varieties.

Lemma 3.1.6. Suppose W is an affine variety of degree D and dimension r. Suppose
ψ1, . . . ,ψn are linear polynomials in z1, . . . , zn−r with each coefficient picked uni-
formly and independently from a subset S of k. Let ψ be the linear map from Am to
An with coordinate functionsψi, and letH be its image. Then with probability at least
1 − 2n3D/|S| we have dimH = n− r and dimH ∩W = 0.

Proof of Lemma 3.1.6. Suppose each ψi is of the form ai0 +
∑n−r
j=1 aijzj. We use

ψhi to denote the homogenization of ψi using the variable z0. Let Wp be the
projective closure of W. We now invoke the projective version of the theorem
on WP, using φ0 = z0. We continue to use φ0 = z0 even in the step when we
assume that we had random polynomials in n + 1 variables. In the projective
case, our steps required that certain matrices were full rank. In the special case

1The n3 is just a lazy estimate.
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with φ0 = z0, the first row of all of the matrices will be of the form 1, 0, . . . , 0
follows by the first coordinate of pi. In any case, this specialization does not
force the matrices to have lower rank, and therefore the proofs go through.
With probability at least 1 − n3D/|S| therefore the image of the homogeneous
version of φ intersectsWp properly.

We finally have to show that there is a point in the intersection in An, so
that the intersections of the affine variety and linear subspace is also of dimen-
sion 0. This is similar to the proof of Lemma 3.1.2 The variety Wp ∩ Pn has
dimension r− 1. The restriction of the image of the homogenized version of ψ
to the hyperplane at infinity is given by the degree 1 part of the polynomials
ψ1, . . . ,ψn. This image has dimension n − r − 1. We want to invoke the pro-
jective version of this lemma on this image and Wp. In this case, the sum of
the dimension of the linear space and variety is 1 less than that of the ambient
space, and therefore by repeating the induction step in the proof on additional
time, we obtain that the two varieties have intersection of dimension −1 with
high probability. The bound on the probability of the bad event is n3D/|S| as
before. As in the proof of Lemma 3.1.2 this is a sufficient condition for what we
require.

The final result holds by taking a union bound over the above two results.

3.2 Noether Normalization

We now discuss a fundamental theorem of commutative algebra called the
Noether normalization lemma. We first state and prove a version of the the-
orem. We then discuss its applications in algebraic geometry. We use [SR13]
and [Gat13] as references for this section.

3.2.1 The Noether Normalization lemma
We first state the main lemma. The following statement is from [Gat13].

Lemma 3.2.1. Let R be a finitely generated k-algebra, with generators x1, . . . , xn.
There is an injective map k[z1, . . . , zr] → R with indeterminates zi that make R into
a finite extension of k[z1, . . . , zr]. Further, if k is infinite, then the images of zi can be
chosen to be linear combinations of the generators xi.

The lemma essentially states that any finitely generated ring extension R is
an integral extension of a polynomial ring. We do not prove here that every
finite extension is integral, a proof can be found in [AM94, Chapter 5]. We
also use the fact that a finite extension of a finite extension is itself finite. To
prove the above, we use an auxiliary lemma which proves that a multivariate
polynomial can be made monic with an appropriate shift.

Lemma 3.2.2. Let f be a nonzero polynomial in k[x1, . . . , xn] where k is an infinite
field. Then there exist a1, . . . ,an−1 ∈ k and λ ∈ k such that g(y) := λf(y1 +
a1yn, . . . ,yn−1 + an−1yn,yn) is monic in yn.
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Proof of Lemma 3.2.2. Suppose f has degree d. The coefficient of ydn in the poly-
nomial g(y) is λfd(a1, . . . ,an−1, 1), where fd is the degree d part of f. We need
to pick a such that fd(a, 1) is nonzero. If we can do this, then we can pick
λ = fd(a, 1)−1 and complete the proof.

That such a a exists follows by induction. Write fd =
∑d
i=1 x

i
1gi. The poly-

nomial fd is nonzero, so some gi is nonzero. The polynomial gi is homoge-
neous of degree d − i in n − 1 variables, and so pick can pick a2, · · · ,an−1 by
induction so that gi(a2, . . . ,an, 1) is nonzero. Then fd(x1,a2, . . . ,an−1, 1) is a
univariate and has only finitely many roots, and we can pick a1 to avoid any
such roots. This last step requires k to be infinite.

We now use Lemma 3.2.2 to prove Lemma 3.2.1.

Proof of Lemma 3.2.1. We induct on n, the number of generators of R as a k-
algebra. When n = 0, the statement vacuously holds. Let n be greater than
0. We consider two cases. Suppose x1, . . . , xn are algebraically independent.
Then k[x1, . . . , xn] is isomorphic to k[z1, . . . , zn], with the map sending zi to xi.
The lemma is clearly true in this case.

Assume now that x are not algebraically independent, and that f is a poly-
nomial such that f(x) = 0. Let a1, . . . ,an−1 and λ be as in Lemma 3.2.2. Set
yi = xi − aixn for i < n and set yn = xn. The y form a generating set for R,
since xn = yn and xi = yi + aiyn for i < n. Further, R is an integral exten-
sion of k[y1, . . . ,yn−1], since λf(y1 + a1yn, . . . ,yn−1 + an−1yn,yn) is a monic
equation for yn. By induction, R[y1, . . . ,yn−1] can be written as a finite exten-
sion of a polynomial ring. Therefore R is a finite extension of a finite extension
of a polynomial ring, and is hence itself is a finite extension of a polynomial
ring. The statement that the map sends each zi to a linear combination of the
xi follows from the way we constructed the yi.

In a later chapter, we will use the above result to prove the Nullstellensatz.
We now make an important observation. The a chosen in the proof are such
that (a, 1) is not a root of a homogeneous polynomial. A sufficiently random
choice of a satisfies this property. Therefore, if we map each zi to a sufficiently
random linear combination of the x, the induced ring extension will still be
integral.

In the next subsection, we discuss the notion of finite maps.

3.2.2 Finite maps
Consider a dense map φ : X→ Y between affine varieties. Since φ is dense, the
map φ∗ : k[Y]→ k[X] is an injection. We identify k[Y] with its isomorphic copy
in k[X] via φ∗. The map φ is called finite if k[X] is an integral extension of k[Y].

Finite maps have a number of useful properties. Before we list these, we
state a consequence of the Noether normalization lemma. Suppose X ⊆ An is
an irreducible affine variety. The coordinate ring ofX is generated by x1, . . . , xn.
If we apply Lemma 3.2.1 to k[X], we get a mapψ : k[z1, . . . , zr]→ k[X] such that
each zi is mapped to a linear combination of the xi, and that k[X] is an integral
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extension of the image of k[z]. The variety corresponding to k[z] is Ar. The
map ψ induces a map ψ∗ : X → Ar. The map ψ∗ is a finite map by definition.
Further, since k[X] is an integral extension of k[z], the field extension k(X)/k(z)
is algebraic. 2 In particular this means that that trdeg(k(X)) = trdeg(k(z)) = r.
The r obtained is therefore the same as the dimension of the variety. In fact, the
above discussion provides some motivation for the definition of the dimension
of the variety. We now state the algebraic version of the Noether normalization
lemma.

Lemma 3.2.3. Given an irreducible affine variety X ⊆ An, there exists a finite map
φ : X → Ar where r is the dimension of X. Further, φ is the composition of the
inclusion map and a linear map.

Further, as discussed after the proof of Lemma 3.2.1, a random linear com-
bination satisfies the above condition. We will soon make this more precise.
Before that, we state some properties of finite maps.

Lemma 3.2.4. Suppose f : X → Y is a finite map between affine varieties. Then f is
surjective, and every point y ∈ Y has finite fibres.

We only prove the second part of the lemma. The proof of the first part
is slightly more involved (it is essentially an application of the Nullstellensatz
followed by an application of Nakayama’s lemma) and can be found in [SR13,
Chapter 1, Section 5, Theorem 1.12].

Proof of part of Lemma 3.2.4. Each xi ∈ k[X] satisfies some monic equation fi
with coefficients in k[Y]. For a fixed b ∈ Y, the set f−1(b) is defined by the
equations yi = bi, where yi are the coordinate functions. On the set f−1(b)
therefore each xi satisfies a specialization of the the equation fi with yi = bi.
These equations only have finitely many roots, and therefore each xi can only
take finitely many values on f−1(b), proving that the latter set is finite.

Another property that we state here without proof is that finiteness is local
property. This means that if f : X → Y is a map between affine varieties, and
every point y ∈ Y has an affine neighbourhood V such that f−1(V) is affine and
the restricted map f : f−1(V) → V is finite, then f itself is finite. This makes it
natural to extend the definition of finite maps. If f : X→ Y is an arbitrary map
between quasiprojective varieties, we say that f is finite it every point y ∈ Y
has an affine neighbourhood V with affine preimage f−1(V) such that the map
f : f−1(V) → V is finite. We therefore have a notion of finite maps between
projective varieties. Further, Lemma 3.2.3 extends to projective varieties too,
although we not prove it here.

We now return to the statement that a random map is Noether normalizing.
First we define the notion of a projection with a centre. Suppose H is a linear

2 A short proof of this fact. The field k(X) is generated by all a/1, 1/a for a ∈ k[X]. Suppose
a satisfies a monic equation f with coefficients in k[z]. Then a/1 is algebraic over k(z) because
of f, and 1/a is algebraic because of xdeg ff(1/x). Finally, since all the generators are algebraic,
so is the extension.
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subspace of Pn of dimension r defined by equations h1 = · · · = hn−r = 0. The
projection with center H is the map with coordinate functions (h1 : · · · : hn−r).
If X is a projective variety contained in Pn \ X then the projection with center
H is a well defined map from X to Pn−d−1. The following theorem gives a
characterization of maps that are Noether normalizing for projective varieties.
It is a direct consequence of [SR13, Chapter 1, Section 5, Theorem 1.15]. We do
not prove it here.

Theorem 3.2.5. Let X ⊆ Pn be a projective variety of dimension d, and let H be a
linear subspace of dimension n−d−1 which avoids X. Then the projection with center
H is a Noether normalizing map for X.

The above theorem along with Lemma 3.1.3 lets us formalize the statement
that a random linear map is Noether normalizing. The statement for projec-
tive varieties is immediate, while that for affine varieties requires an argument
involving projective closures.

Theorem 3.2.6. Let V ⊆ Pn be a projective variety of dimension r and degree D. Let
h1, . . . ,hr+1 be linear forms such that hi depends on n + 2 − i variables, and each
coefficient of hi is picked uniformly and independently from a subset S of k that does
not contain 0. Then with probability at least 1−(r+1)D/|S|, the map with coordinate
functions hi is Noether normalizing.

Let W ⊆ An be an affine variety of dimension r and degree D. Let `1, . . . , `r be
linear polynomials such that `i depends on n + 1 − i variables, and each coefficient
of `i is picked uniformly and independently from a subset S of k that does not contain
0. The `i can also be linear forms (without constants). Then with probability at least
1 − (r+ 1)D/|S|, the map with coordinate functions `i is Noether normalizing.

Proof of Theorem 3.2.6. By Corollary 3.1.4 with probability at least 1−(r+1)D/|S|,
the subspace defined by the equations hi avoids V . This also automatically en-
sures that the dimension of the subspace is n − r − 1, since if it was more than
this, it could not avoid V . The projection from this subspace is given by the
map with coordinate functions hi, and this map is Noether normalizing for V
by Theorem 3.2.5.

We now show the affine statement. We consider Wp, the projective closure
ofW, and find a normalizing map forWp. Not every normalizing map forWp

will give us a normalizing map forW. In order to ensure we get a normalizing
map forW, we pick `0 = x0, and use this as the first coordinate for our Normal-
izing map forWp. This ensures that the Pn∞ is mapped to Pr∞, and that the affine
chart containingW is mapped to the affine space Pr \ Pr∞. Since no component
of Wp is contained in Pn∞, we have dimWp ∩ Pn∞ = r − 1. By Lemma 3.1.3
applied toWp ∩ Pn∞, the projective closure of the subspace defined by `1, . . . , `r
avoids Wp ∩ Pn∞. The subspace defined by `0, . . . , `r then avoids Wp, and the
projection from this subspace is Noether normalizing. The map An → Ar with
coordinate functions `1, . . . , `r is therefore Noether normalizing forW.
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Chapter 4

The Nullstellensatz

In this chapter, we discuss Hilbert’s Nullstellensatz (aka the zero-locus-theorem).
This is a foundational result that establishes a fundamental relationship be-
tween geometry and algebra. The Nullstellensatz (more precisely one of its
many forms) states that a set of polynomials do not have a common zero if and
only if the ideal they generate is the trivial ideal. In other words, the Nullstel-
lensatz proves the existence of a natural certificate that a given set of polyno-
mials do not have a common zero.

In the first part of the chapter, we state and prove the original non construc-
tive formulation(s) of the Nullstellensatz. In the second part of the chapter,
we discuss the ideal membership problem. In the third part of the chapter,
we discuss the effective Nullstellensatz. This includes a proof of the effective
Nullstellensatz, and a brief literature survey of related results.

4.1 The non-constructive Nullstellensatz

We use [CLO07], [Vak17], and [Gat13] as references for this section.
The Nullstellensatz has a number of different (and mostly equivalent for-

mulations). The following two are the most common ones. Despite their names,
they are equivalent.

Theorem 4.1.1 (The Weak Nullstellensatz). Let k be an algebraically closed field,
and let I be a nontrivial ideal of k[x1, . . . , xn]. Then V(I) 6= ∅.

Theorem 4.1.2 (The Strong Nullstellensatz). Let k be an algebraically closed field,
and let I be a nontrivial ideal of k[x1, . . . , xn]. Then I(V(I)) =

√
I.

If I = k[x], then V(I) = ∅ by definition, since the constant polynomial 1
has no roots. The weak Nullstellensatz states that the converse holds too. The
strong Nullstellensatz completes the ideal-variety correspondence. A discus-
sion about this correspondence can be found in chapter 2. We will first prove
the equivalence of the above two statements. We then state a third form of the
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Nullstellensatz, which is slightly more general than the above two forms. We
then prove the third form, and finish by showing how it implies the above.

Equivalence of Theorem 4.1.1 and Theorem 4.1.2. That the strong Nullstellensatz im-
plies the weak Nullstellensatz is straightforward: Suppose I is an ideal such
that V(I) = ∅. By the strong Nullstellensatz,

√
I = I(V(I)) = I(∅) = k[x]. This

implies that 1 ∈
√
I, which implies that 1 ∈ I.

We now prove the other direction. Suppose first that he ∈ I. Then he = 0
at every point in V(I), and therefore h = 0 at every point in V(I). This implies
that h ∈ I(V(I)), and hence

√
I ⊆ I(V(I)). For the reverse inclusion we use the

Rabinowitsch trick ([Rab30]). Let I = 〈f1, . . . , fm〉, and let g ∈ I(V(I)). Consider
the ring k[x,y], where y is a new variable. Let J = 〈f1, . . . , fm, 1 − gy〉, where
fi are considered as elements of k[x,y]. We show that V(J) = ∅. Suppose
(c1, . . . , cn, cn+1) is an element of kn+1. If (c1, . . . , cn) ∈ V(I), then it is also a
root of g, and therefore cannot be a root of 1 − yg for any value of cn+1, and
therefore c 6∈ V(J). But if (c1, . . . , cn) 6∈ V(I), then c 6∈ V(J) since every element
of I is also in J. Therefore, V(J) = ∅, and by the Weak Nullstellensatz we get
that J = k[x,y]. We can write then 1 = h0(1−yg)+

∑m
i=1 hifi where hi ∈ k[x,y].

In the above equation, we substitute y = 1/g, and clear denominators on the
right hand side. The term h0(1 − yg) vanishes after the substitution, and we
get 1 = f/ge for some f ∈ I. This gives us ge ∈ I and therefore g ∈

√
I, proving

that I(V(I)) ⊆
√
I.

A third statement, equivalent to the above is that every maximal ideal of
k[x] is of the form 〈x1 − a1, . . . , xn − an〉. We use ma to denote ideals of the
above form. To show this equivalence, we use the fact that f ∈ ma if and only
if f(a) = 0. 1 If g is any polynomial not in m, then g(a) 6= 0. But we also have
g(a) ∈ ma + 〈g〉, whence ma + 〈g〉 = k[x]. Conversely, if J is an arbitrary ideal
of k[x], then by the weak Nullstellensatz, there is a common root b1, . . . ,bn of
every polynomial in J. This implies that J ⊆ mb. If J itself is maximal then
J = mb, completing the proof of the equivalence.

We now state the final form of the Nullstellensatz. This form is slightly
more general than the above, and is sometimes called Zariski’s Lemma. We
will use this latter name in order to distinguish it from the above.

Lemma 4.1.3 (Zariski’s Lemma). Suppose K is a field, and A is a finitely generated
K-algebra that is also a field. Then A is a finite extension of K.

Equivalently, if K is a field and m a maximal ideal of K[x], then K/m is a finite
extension of K.

The above lemma does not require K to be algebraically closed. The equiva-
lence follows from the fact that any finitely generated K algebra is the quotient
of the polynomial ring K[x], and if the algebra is also a field then the kernel is a
maximal ideal.

1 This fact follows from the division algorithm applied one variable at a time.
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We will prove Zariski’s Lemma using the Noether Normalization Lemma.
Before we do this, we show that Zariski’s Lemma implies the Nullstellensatz
in the above forms.

Proof of Theorem 4.1.1 and Theorem 4.1.2 using Lemma 4.1.3. Suppose I is an ideal
of k[X], and m is a maximal ideal containing I. By Zariski’s Lemma, k[x]/m is
a finite extension of k, and since k is algebraically closed we have k[x]/m = k.
Let a1, . . . ,an be the images of x1, . . . , xn under the quotient map. The ideal
m consists of xi − ai for every i, since these elements are mapped to 0 under
the quotient map. The ideal 〈x1 − a1, . . . , xn − an〉 is maximal, and is therefore
equal to m. Therefore I ⊆ 〈x1 − a1, . . . , xn − an〉 whence the point (a1, . . . ,an)
is a common root for every element in I. This proves Theorem 4.1.1.

The proof of Theorem 4.1.2 is also complete since we proved the equiva-
lence of the two Nullstellensatz. The following is an alternative proof of the
fact that I(V(I)) ⊆

√
I, which is the nontrivial part of the Nullstellensatz. It

uses more commutative algebra than in the preliminaries. Let I = 〈f1, . . . , fm〉,
and g be an arbitrary polynomial. Consider the quotient ring B := k[x]/I.
The condition g ∈

√
I is equivalent to Bg = 0. Suppose Bg 6= 0, and n is

a maximal ideal in Bg. The field Bg/n is a finitely generated k algebra, and
hence is equal to k. Let b1, . . . ,bn be the images of x1, . . . , xn under the map
k[x]→ B→ Bg → Bg/n = k. Then xi−bi generate the kernel of the map. Each
fi goes to 0 under this map, and hence b is a root of every element in I. On
the other hand, g is nonzero under this map, since g is a unit in Bg, and hence
b is not a root of g. We have proved g 6∈

√
I =⇒ g 6∈ I(V(I)), or equivalent

I(V(I)) ⊆
√
I as required.

We note that the last proof is basically the Rabinowitsch trick: in both places
we prove that Bg is 0 when g ∈ I(V(I)), the Rabinowitsch trick just uses a
different representation of Bg. We finally prove Zariski’s Lemma.

Proof of Lemma 4.1.3. Let A be a finitely generated k algebra that is also a field.
By the Noether normalization lemma, we know that A is an integral extension
of some polynomial ring k[z1, . . . , zr]. We will now prove that if R is a ring and
R ′ is some integral extension of R, then R is a field if R ′ is a field. Once we prove
this, we obtain in our setting that k[z1, . . . , zr] is a field, whence we must have
r = 0. This will complete the proof, since A will then be an integral extension
of k, and therefore a finite field extension of k.

Suppose R ′ is a field, and x ∈ R is an arbitrary element. Then x−1 ∈ R ′,
and hence x−1 is integral over R. Let the minimal monic equation of x−1 be
x−m+rm−1x

−m+1+ · · ·+r0 = 0, with ri ∈ R. Then by multiplying by xm−1 and
rearranging we get x−1 = −rm−1−xrm−2− · · ·−r0x

m−1, and therefore x−1 ∈ R.
This completes the proof. The converse of the above statement is also true if we
assume that R is a domain, although we do not need it here. Given an x ∈ R ′,
the idea there is to basically consider the minimal polynomial of x, argue that
it has a constant term since R is a domain, and that the reciprocal polynomial
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is satisfied by x−1. Finally, the reciprocal polynomial can be made monic since
the coefficients (which are from R) are units. This proves that x−1 ∈ R ′.

The most natural question to ask given an existential statement like the
Nullstellensatz, is whether we can decide by algorithm if a set of polynomi-
als have a common root. In other words, suppose we are given polynomials
f1, . . . , fn over k, and we have to check if they have common roots. By the
Nullstellensatz, it suffices to check if 1 ∈ 〈f1, . . . , fn〉, or equivalently, to check
if there exists g1, . . . ,gn such that 1 =

∑
figi. We call the gi witnesses, since

they witness the fact that 1 ∈ 〈f〉.
The Nullstellensatz itself does not give us any control over gi. It is feasible

that gi have arbitrarily high degree, and therefore no search procedure for them
is guaranteed to terminate. That this is not the case was proven early in the 20th

century, by Grete Hermann [Her26]. She proved double exponential upper
bounds for witnesses for arbitrary ideal membership queries. The following is
a version of the theorem statement from [MM82].

Theorem 4.1.4. Let f1, . . . , fm be polynomials of degree at most d in k[x1, . . . xn], and
g be a polynomial of degree d ′ in the ideal generated by f1, . . . , fm. Then there exists
polynomials h1, . . . ,hm each of degree at most d ′ + (md)2n such that g =

∑
figi.

A proof can be found in the appendix of [MM82]. This bound shows that
the ideal membership problem, and in particular the Nullstellensatz problem is
decidable, since it reduces to solving a double exponential sized linear system.
Mayr and Meyer in the same paper also proved that this double exponential
bound cannot be improved in general. They constructed an ideal in 10n vari-
ables with 10n + 1 generators and proved the existence of a polynomial in the
ideal such that every set of witness polynomials has at least one polynomial of
degree d2n−1

. Here, d is a parameter, and every generator of their ideal is a dif-
ference of two monomials with degree at most d+ 2. They also proved that the
ideal membership problem is EXPSPACE hard, by reducing the commutative
word equivalence problem to it. Finally the above double exponential bound
along with the effective linear algebra results of [Csa75] show that the ideal
membership problem is also in EXPSPACE, making it EXPSPACE hard.

The above discussion does not bode well for the Nullstellensatz problem,
because it might be EXPSPACE complete too. However, it was proved that sin-
gle exponential degree bounds exist in the special case of the Nullstellensatz,
putting it in PSPACE. We discuss these results in the next section, and also
prove the degree bound. The proof of single-exponential bounds for the Null-
stellensatz allowed special cases of the ideal membership problem, such as the
case of unmixed and zero dimensional ideals to be solved in single-exponential
time [DFGS91]. In 1996, Koiran [Koi96] gave an AM protocol (conditioned on
GRH) for the Nullstellensatz problem, when the underlying field is C and the
polynomials have integer coefficients. His method is completely different from
the previous methods of using the effective Nullstellensatz to reduce the sys-
tem to a linear one. The positive characteristic case is an open problem, and
the best known complexity remains PSPACE.
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4.2 The effective Nullstellensatz

The first proof of a single exponential upper bound for the Nullstellensatz was
given by Brownawell [Bro87]. He proved the result when k = C using an-
alytic techniques. 2 A year later, an alternate algebraic proof was given by
Kollár [Kol88] that worked for every characteristic. His proof used some prop-
erties of local cohomology groups. A more elementary proof using bounds on
Hilbert functions was given by Sombra [Som97]. The proof that we discuss
here was given by Jelonek [Jel05], and is significantly simpler than all of the
proofs above. The above is far from a complete discussion of the existing lit-
erature on the problem. There are a number of other results that improve the
above bounds and/or give improvements for special cases. These include but
are not limited to [KPS99, KPS+01, Som99].

In the projective setting, much better bounds are known. If F1, . . . , Fn are
homogeneous polynomials of degree at most D without a common root in
projective space, then the projective version of the Nullstellensatz states that
the ideal generated by the Fi contains a power of the irrelevant ideal. It fol-
lows from classical elimination theory that this power is upper bounded by
nD [Mac02, Laz77]. This is a quadratic bound. In particular, if we have non-
homogeneous polynomials without a common root even at the hyperplane at
infinity, then the improved quadratic bounds apply instead of the single ex-
ponential bounds. In the general case however, the single exponential bounds
are essentially tight. An example witnessing this is given in [Bro87], and is
presented later in this section.

We first state the version of the effective Nullstellensatz from [Jel05].

Theorem 4.2.1. Let k be algebraically closed, and let f1, . . . , fm ∈ k[x1, . . . , xn] be
polynomials of degrees d1, . . . ,dm. Assume that d1 > d2 > · · · > dm. Also assume
that f1, . . . , fm do not have any common roots. Then there exists g1, . . . ,gm such that
1 =

∑m
i=1 figi. Further, the gi also satisfy the property that deg figi 6

∏m
i=1 di.

We note that this is not the tightest version of the theorem statement in
[Jel05], in the case when m > n. However, in our application we only use the
case of m = n + 1, and in this case the difference is only a factor of dm/2.
Dropping the last factor will increase the length of the proof by a factor of at
least 2, and therefore we do not do it here.

Before we prove this, we give the example from [Bro87] that shows that this
is essentially tight. Fix some d, and let f1 = xd1 and fn = 1 − xn−1x

d−1
n . For

2 6 i 6 n− 1, let fi = xi−1 − x
d
i . These polynomials do not have any common

root, since the only common roots of f1, . . . , fn−1 has first n − 1 coordinates 0,
and no such point can be a root of fn. Suppose 1 =

∑
figi for some gi. In the

above equation, we substitute xi = t(d−1)dn−i−1
for i 6 n − 1, and xn = tn.

Under this substitution, the polynomials f2, . . . , fn all vanish, and therefore we
get 1 = f ′1(t)g

′
1(t). Now f ′1(t) = t(d−1)dn−1

. The only way the product is equal
to 1 is if g1 has degree at least dn − dn−1, which shows the required bound.

2The results extend to all characteristic 0 fields via the Lefschetz principal.
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A key ingredient in Jelonek’s proof of the effective Nullstellensatz is the
classical result of Perron which bounds the degree of the annihilator of n + 1
polynomials in n variables. The following statement is from [Pł05], while the
original proof is from [Per51, Satz 57]. This theorem will also be of fundamental
importance when we discuss algebraic independence.

Theorem 4.2.2. Let f1, . . . , fn+1 be a sequence of polynomials in k[x1, . . . , xn], with
degrees d1, . . . ,dn+1. Then there exists a polynomial A in k[y1, . . . ,yn+1] such that

• A(f1, . . . , fn+1) is identically 0, and
• degw(A) 6

∏n+1
i=1 di, where degw is the weighted degree with degw(yi) =

di.

The above bound on the weighted degree of A will be referred to as the
Perron bound. A proof can be found in [Pł05], and involves only linear algebra.

Before we present the proof of Theorem 4.2.1, we make an observation.
Suppose we had n + 1 polynomials that did not have a common root, and
suppose the polynomial A from Theorem 4.2.2 was such that it had a nonzero
constant term. Then the polynomial A also gives us a Nullstellensatz witness
that matches the degree bound of Theorem 4.2.1. We start with the equation
A(f1, . . . , fn+1) = 0, move the constant term to the other side and divide by it.
We then collect all monomials in which f1 appears, and after factoring out f1
label the other factor g1. We then collect all the monomials among the remain-
ing ones in which f2 appears, factor it, and call the remaining bit g2, and so
on. This gives us an equation of the form

∑
figi = 1. In the case when the fi

have transcendence degree n, the condition thatA has a nonzero constant term
is equivalent to the condition that the fi do not have a common approximate
root, for an appropriate definition of approximate roots. Therefore we can de-
duce that the hard case of the effective Nullstellensatz is when the polynomials
do not have a common root, but have a common approximate root. A discus-
sion on approximate common roots, and a proof of the above equivalence can
be found in [GSS18].

We now prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Ifm 6 n, then we add polynomials fm+1 = · · · = fn+1 =
0, and we assume that m > n. This does not change either the assumption of
empty zeroset. Further, we set dm+1, . . . ,dn+1 = 1 in this case. The degree
bounds also therefore go unchanged.

Let h1, . . . ,hm be polynomials such that 1 =
∑
fihi. Such polynomials

exist by the classical Nullstellensatz. Let z be a fresh variable. Define the map
φ : An+1 → An+m as

φ(x1, . . . , xn, z) = (x1, . . . , xn, zf1(x1, . . . , xn), . . . , zfm(x1, . . . , xn)). (4.1)

The space An+1 is isomorphic to its image under φ, since the following poly-
nomial map is an inverse of φ when restricted to the image:

φ ′(y1, . . . ,yn+m) =

(
y1, . . . ,yn,

m∑
i=1

hiyn+i

)
. (4.2)
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In particular, the image φ
(
An+1

)
is closed, and has dimension n+ 1 and when

treated as a map from An+1 to φ
(
An+1

)
, the map φ is finite. Let d denote the

degree of the image. We will prove in later sections that d 6
∏m
i=1(di + 1), but

for this proof we just require that d is finite.
Let π : An+m → An+1 be a linear projection of the form

π(y1, . . . ,yn+m) =

(
m+n∑
i=1

a1,iyi,
n+m∑
i=2

a2,iyi, . . . ,
n+m∑
i=n+1

an+1,iyi

)
. (4.3)

Note that the first coordinate function is a linear combination of all the vari-
ables, the second is a linear combination of all variables except the first, and so
on. Suppose each aij is picked uniformly and randomly from a subset S of of
k. By Corollary 3.1.4, with probability at least 1 − 2(n + 2)d/|S|, the subspace
defined by the equations

∑n+m
i=j aj,iyi is disjoint from φ(An+1). If this is the

case then by Theorem 3.2.5, the map π is Noether normalizing for φ(An+1).
For the rest of the proof, we assume that π has this property.

Both the maps φ and π are finite. Since integral extensions of integral ex-
tensions are integral, the composition ψ := π ◦φ : An+1 → An+1 is also a finite
map. Explicitly, the jth coordinate function ψj is lj(x1, . . . , xn) +

∑m
i=j aj,izfi,

where lj is a linear form.
Let ψj also denote the polynomial corresponding to this function. Each of

these polynomials can be treated as a n variate polynomial over the field k(z).
Since deg fi > deg fi+1 for all i, and since each ψi is a linear combination of
fi, fi+1, . . . , fm, we have degψi = di when treated as polynomials over k(z).
Since there are n + 1 of them, by Theorem 4.2.2 there exists a n + 1 variate
polynomial A with coefficients in k(z) such that A(ψ1, . . . ,ψn+1) = 0. Further,
thisA also satisfies weighted degree bounds, that is degwA 6

∏n+1
i=1 di, where

the ith variable of A has weight di.
Each coefficient of A is an element of k(z), and by potentially clearing de-

nominators, we can assume that the coefficients are in k[z]. This does not
change the degree ofA. We can therefore construct a polynomial B in n+2 vari-
ables v1, . . . , vn+2 by starting with A, labelling its n+ 1 variables as v1, . . . , vn+1
and replacing the variable z which occurs as part of the coefficients with the
variable vn+2. The polynomial B satisfies B(ψ1, . . . ,ψn+1, z) = 0. By construc-
tion, B has weighted degree at most

∏n+1
i=1 di, where the first n + 1 variables

v1, . . . , vn+1 have weights d1, . . . ,dn+1 respectively, and vn+2 has weight 0.
The composed map ψ : An+1 → An+1 is finite, and therefore surjective,

and in particular also dominant. The corresponding map of coordinate rings
ψ∗ is therefore an injection, and the coordinate ring of the domain An+1 is an
integral extension of the image of ψ∗. More explicitly, the ring k[x1, . . . , xn, z]
is an integral extension of the ring k[ψ1, . . . ,ψn+1]. Let C denote the minimal
polynomial of z over k[ψ1, . . . ,ψn+1]. By definition, C is a monic univariate
polynomial, say in the variable u, with coefficients from k[ψ1, . . . ,ψn+1] such
that C(z) = 0. We write C =

∑D
i=0 pi(ψ1, . . . ,ψn+1)u

i, where D is the degree
of C.
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Since the extension is integral, the ideal of univariates in k[ψ1, . . . ,ψn+1][u]
with root z is a principal ideal generated by C. 3 We can also treat B as a
polynomial in k[ψ1, . . . ,ψn+1][u] by specializing the first n+1 variables of B to
ψ1, . . . ,ψn+1, and relabelling the last variable to u. This univariate has z as a
root by construction, therefore, C divides B in k[ψ1, . . . ,ψn+1][u].

The polynomialsψ1, . . . ,ψn+1 themselves are algebraically independent over
the field k: suppose there some polynomial ρ such that ρ(ψ1, . . . ,ψn+1) = 0.
Then ρwould vanish on the image of the mapψ, but sinceψ is a finite map, it is
surjective and has image An+1, and therefore ρ would have to be 0. Therefore,
we can naturally treat C as a polynomial in the n+ 2 variables v1, . . . , vn+2. We
do this by replacing uwith vn+2, and occurrences of ψi in the coefficients with
vi, obtaining C =

∑D
i=0 pi(v1, . . . , vn+1)v

i
n+2. This conversion is well defined

and unique by the independence of ψi. That C divides B in k[ψ1, . . . ,ψn+1][u]
now also means that C divides B as polynomials in k[v1, . . . , vn+2], as can be
seen by applying a similar conversion to the factor B/C. This implies that the
weighted degree ofC is at most the weighted degree ofB, which itself is at most∏n+1
i=1 di. Here the variable vi has weight di for i 6 n+ 1, and vn+2 has weight

0. In particular this means that for every i, the polynomial pi(ψ1, . . . ,ψn+1)

is a polynomial of degree at most
∏n+1
i=1 di when treated as a polynomial in

x1, . . . , xn, z.
Finally, consider the expansion C(z) =

∑D
i=0 pi(ψ1, . . . ,ψn+1)z

i written as
a polynomial in k[x1, . . . , xn][z]. By definition this is the 0 polynomial, and
therefore the coefficient of every zi in this expansion is 0. Consider in particu-
lar the coefficient of zD, which is

∑D
i=0 coeffzD−i(pi(ψ1, . . . ,ψn+1)). The term

corresponding to i = D in the summand is 1, since C is monic. Every other
coeffzD−i(pi(ψ1, . . . ,ψn+1)) is a sum of multiples of the original polynomials
f1, . . . , fm, since in each ψi the variable z only occurs multiplied to some fj.
Therefore the coefficient of zD is of the form 1 +

∑
figi for gi ∈ k[x1, . . . , xn],

and we can rearrange (and change signs) to obtain 1 =
∑
figi. By the weighted

degree bound proved in the previous paragraph, each figi has degree at most∏n+1
i=1 di, which completes the proof.

3The same proof that shows that a univariate polynomial ring over a field is a PID works here:
the scaling step can be performed since we assume thatC is monic.

29



Chapter 5

Algebraic independence

In this chapter, we take a detour from our previous discussion and discuss the
algebraic independence problem. The problem is to determine, given a set of
polynomials f1, . . . , fn whether or not they are algebraically independent in the
function field k(x1, . . . , xn).

There is evidence (see discussion in [Mul12]) that from a computational
perspective, it is advantageous to define varieties by giving a polynomial map
whose closure is the given variety, as opposed to describing the generators
of the ideal corresponding to the given variety. The algebraic independence
problem is equivalent to computing the dimension of such an explicit variety.

In this chapter, we will focus more on the second formulation of the prob-
lem, even though it requires more technical background. It turns out that the
problem is easier in characteristic 0 than in finite characteristics, even though
there is considerable evidence that it cannot be too difficult in the latter case.
The hope is that this more complicated formulation will also afford the use of
the more sophisticated tools of algebraic geometry.

This chapter is organized as follows. In the first section we will state the
problem in multiple equivalent ways. In the second section we will state some
results about algebraic independence and we will use the polynomial map for-
mulation to provide proofs of these results. All of these results are well know,
and all we do is provide (in some cases) alternative proofs. A survey, including
many of the original proofs of this result and the history of the problem can be
found in [Sin19].

5.1 Problem definition

Let k be the underlying field, and p denote its characteristic. Let f1, . . . , fm be
n variate polynomials from k[x1, . . . , xn] of degrees d1, . . . ,dm respectively. In
fields that are of interest to us, the problem does not change if we replace k
by an algebraic extension, and therefore we assume that k is replaced by its
algebraic closure. When required, we will be more explicit about the field in
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which the coefficients of fi lie.
The polynomials are said to be algebraically independent if and only if for ev-

ery non-zero polynomialG ∈ k[y1, . . . ,ym], it holds thatG(f1, . . . , fm) is not the
identically zero polynomial. Equivalently, the polynomials are said to be alge-
braically dependent if and only if there exists some polynomialA ∈ k[y1, . . . ,ym]
such that A(y1, . . . ,ym) is the identically zero polynomial. For example, if
f1 := x1 + x2 and if f2 := (x1 + x2)

2, then f1 and f2 are algebraically depen-
dent, with A = y2 − y

2
1. On the other hand, if f1 := x1 and f2 := x1 + x2, then

no such polynomial A exists, and thus f1 and f2 are algebraically independent.
1 When polynomials f1, . . . , fm are dependent, any polynomial A that satisfies
A(f1, . . . , fm) ≡ 0 will be called an annihilator of f1, . . . , fm. The set of annihi-
lating polynomials form an ideal. Note that the dependence/independence of
polynomials depends on the underlying field. Consider for example polyno-
mials f1 := x1 +x2 and f2 := x2

1 +x
2
2. If chark = 2, then f1 and f2 are dependent,

with annihilator y2 − y
2
1. If chark 6= 2, then some more variable chasing will

show that f1 and f2 are independent.
An alternative formulation of this problem is to check, given some field

extensions, whether or not they are algebraic. Consider the field extensions
k(x)/k(f), k(f)/k and k(x)/k. We have

trdegk k(x) = trdegk k(f) + trdegk(f) k(x),

where trdegK L denotes the transcendence degree of the extension L/K. We also
have trdegk k(x) = n by definition, and therefore trdegk k(f) 6 n. By defini-
tion, the polynomials are algebraically independent if and only if trdegk k(f) =
m. If m > n therefore, the polynomials are always dependent. Finally, the
polynomials are dependent if and only if the field extension k(f) is algebraic
over k(f1, . . . , fi−1, fi+1, . . . , fm) for some i. In general, we will refer to trdegk k(f)
as the transcendence degree of the polynomials f1, . . . , fm.

At this point, we show that going to an extension of k does not change the
algebraic independence of the polynomials. We will assume that the field k is
perfect, which is the case when k is a finite field or a field of characteristic 0.
Suppose f1, . . . , fm are polynomials with coefficients in k that are dependent
when considered as polynomials in an algebraic extension K of k. Let B be the
annihilator of the polynomials f1, . . . , fm in K[y1, . . . ,ym]. It suffices to replace
K with the subfield that contains k and all the coefficients of B. We assume
therefore that K is a finite extension, and by the primitive element theorem, is
generated by a single element α ([Lan02, Chapter 5, Theorem 4.6]). We can
now write B as B =

∑D−1
i=0 α

iBi(y1, . . . ,ym) where each Bi has coefficients in
k, and D is the degree of the extension. Each Bi when evaluated at x results in
an element of k[x] since the coefficients of fi are from k. Further, since αi are
k-linearly independent, they are also k[x1, . . . , xn] linearly independent, and
therefore each Bi must be 0 when evaluated at f. That B is nonzero implies that
some Bi is nonzero, and this Bi is an annihilator for f as polynomials in k. We

1Proving this involves some simple variable chasing.
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can also note that since the degree of Bi is at most the degree of B, going to an
extension does not even imply the existence of annihilators of smaller degree.
Therefore, we can assume that k is algebraically closed.

We now present the final formulation. Given its importance in this chapter,
we reserve a subsection for it, and provide some motivation.

5.1.1 Polynomial maps and algebraic independence
Given the ring k[f], a natural object to look at is the affine variety that it corre-
sponds to. 2 Since k[f] is a finitely generated algebra over kwithm generators,
it is isomorphic to k[y1, . . . ,ym]/U for some ideal U. The isomorphism takes
each yi to fi. If f satisfy some algebraic relation, then applying the inverse of
the above isomorphism we see that y also must satisfy the same relation. The
converse also holds. Thus the ideal U is exactly the ideal of all annihilators of
f.

The ring k[y]/U corresponds to the affine variety defined by the equations
in U. We call this affine variety Y. When we want to emphasize the dependence
of Y on f, we use Yf. There is a natural map i from k[y]/U to k[x] that takes
each yi to fi. As discussed above, this is well defined since elements in U are
exactly the algebraic relationships in f. Further, this map is an injection, since
U consists of all algebraic relationships between f. The map i corresponds to
a map i∗ from the affine variety corresponding to k[x](namely An) to Y. The
map i∗ has jth coordinate function fj, and is thus exactly the polynomial map
with coordinates f1, . . . , fm. We will call this map φf. Since i is an injection, the
map φf is dominant. In other words, Y is exactly the closure of the image of
An under φf. 3

The above discussion shows that given k[f], it is natural to consider the map
φf with coordinate functions f1, . . . , fm. This point is driven home by the fact
that the dimension of the affine variety Y is exactly the transcendence degree
of f. This follows by (one of) the definition(s) of the dimension of an affine
variety. We first make the following simple observation.

Lemma 5.1.1. The affine variety Y is irreducible.

Proof of Lemma 5.1.1. The affine variety An is irreducible, and hence so is its
image under the regular map φf. The affine variety Y is thus the closure of an
irreducible set 4 , and hence is itself irreducible.

Alternatively, an affine variety is irreducible if and only if its coordinate
ring is a domain. That k[f] is a domain follows from the fact that it is a subring
of the domain k[x].

We can now use the definition of the dimension.
2Of course one has to make sure that the ring has no nilpotent elements, a property that k[f]

satisfies.
3The focus of this document is the finite characteristic case, and thus unless stated otherwise,

the topology is always the Zariski topology.
4The image is also a quasi-projective variety, just maybe not affine.
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Definition 1 ([SR13, p. 67]). The dimension of an irreducible affine variety is
the transcendence degree of its function field.

Lemma 5.1.1 allows us to apply the above to Y. In particular, polynomials
f1, . . . , fm are algebraically independent if and only if dimYf = m. Alterna-
tively, the polynomials are independent if and only if the image of the map φf

is dense in Am.
Before we prove properties about algebraic independence, we state an up-

per bound on the degree of Y that will be useful. We collect this property, and
the statement about the dimension of Y in a single lemma to make it easier to
invoke later. The proof of the degree bound is non trivial, and we only provide
a reference.

Lemma 5.1.2. The variety Y has degree equal to the transcendence degree of the poly-
nomials f1, . . . , fm. Further, the degree of Y is at most (maxdi)r, where r is the
transcendence degree.

Proof of Lemma 5.1.2. The first statement follows from the discussion preceding
the lemma. A proof of the second statement can be found in [BCS97, Theo-
rem 8.48]. The idea is to write φf as the composition of the Veronese embed-
ding followed by a linear map. Studying the Hilbert polynomial shows that the
Veronese embedding has degree equal to the product of the degrees, reducing
the statement to the case of linear maps, where it is easily proved.

We will now prove some known results using the above framework.

5.2 Some properties of algebraic independence

5.2.1 Basic results
We start with some fairly easy results. The first is that if the transcendence
degree of f1, . . . , fm is m − 1, then the ideal of annihilators is principal. The
following statement is from [Kay09].

Theorem 5.2.1 ([Kay09, Lemma 7]). If f1, . . . , fm are algebraically dependent such
that no subset of them are algebraically dependent, then the ideal of annihilators U is
principal.

This is a consequence of the fact that ideals corresponding to irreducible
varieties of dimensionm−1 in Am are principal. The proof is immediate given
this fact.

Lemma 5.2.2 ([SR13, Theorem 1.21]). If X ⊂ Ak is an irreducible affine variety
of dimension k − 1, then the coordinate ring k[X] is isomorphic to k[y]/UX with UX
principal.

The next statement is the fact that if we havem polynomials that have tran-
scendence degree r, then taking r linear combinations of these polynomials
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results in a set of independent polynomials. Further, taking r + 1 linear com-
binations results in a set of polynomials of transcendence degree r, and there-
fore the previous result applies. Finally, random linear combinations have the
above properties. This is a consequence of the Noether Normalization lemma.

Theorem 5.2.3. Let f1, . . . , fm be a set ofm polynomials inn variables. Let trdeg(f) =
r. Then there exist polynomials g1, . . . ,gr+1 of the form

gi =

m∑
j=i

ai,jfj

such that trdeg(g1, . . . ,gr) = r and also trdeg(g1, . . . ,gr+1) = r.
Further, suppose each aij is picked uniformly and randomly from a subset S of

the field k that does not include zero. Then the above holds with probability at least
1 − 2(r+ 1)D/|S|, where D = (maxdi)r.

Proof of Theorem 5.2.3. Letφf be the polynomial map with coordinate functions
fi, and let Y be the closure of its image. We have dim Y = r and deg Y 6 D by
Lemma 5.1.2. Let π be the linear map Am → Ar with coordinate functions
πi(y1, . . . ,ym) =

∑m
j=i aijyj. By Theorem 3.2.6, the map π is Noether nor-

malizing for Y with the mentioned probability, and in particular finite. The
composed map π ◦ φf is therefore dense. This map has coordinate functions
g1, . . . ,gr, which proves that these polynomials have transcendence degree r.
Let π ′ : Am → Ar+1 be the map with coordinate functions π ′i(y1, . . . ,ym) =∑m
j=i aijyj. The image of Y under this map has dimension r at most r since Y

has dimension r. The image has dimension at least r since the projection π of π ′

has dimension r, and therefore the image has dimension exactly r. Therefore
the polynomials g1, . . . ,gr+1 have transcendence degree r.

The next result we discuss is variable reduction. Suppose polynomials
f1, . . . , fm have transcendence degree r. We can then replace each xi with a
linear combination of r new variables z1, . . . , zr such that the resulting r variate
polynomials are also algebraically independent.

Theorem 5.2.4 ([Kay09, Claim 11.1], [Mit12, Theorem 4.2.2]). Let f1, . . . , fm be a
set of m polynomials in n variables, with m < n. Let trdeg(f) = r. Then there exist
a homomorphism ψ∗ : k[x1, . . . , xn]→ k[z1, . . . , zm] of the form

ψ∗(xi) = ai,0 +

m∑
j=1

ai,jzj

such that trdeg(ψ∗(f)) = trdeg(f) = r.

In fact we will show the stronger statement that a random such homomor-
phism will work.

Proof of Theorem 5.2.4. By potentially considering just a subset of the polynomi-
als, we can assume without loss of generality thatm = r. Let b be a point in the
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image φf(An) that has fibre of dimension exactly n −m. We use V to denote
φ−1

f (b). LetH be any linear subspace of dimensionm such that dimH∩V = 0.
Let ψ be a linear map from Am to An that maps Am isomorphically to H. The
corresponding map ψ∗ : k[An]→ k[Am] is a linear map of the stated form. We
will prove that trdeg(ψ∗(f)) = m.

Let Y ′ := φf ◦ ψ(Am), and let m ′ := dim Y ′ be the dimension of the image
of the composed map. By construction, the point b is in Y ′. Further, b has a
finite fibre under this map, since the fibre corresponds exactly to the set H ∩
V which we assumed was finite. By the dimension theorem, every fibre has
dimension at least m − m ′, and therefore m ′ > m. Further, since the map
φf ◦ ψ : Am → Y ′ is dominant, we also have m > m ′ whence we deduce
that m = m ′. Finally, m ′ = trdeg(ψ∗(f)) by the definition of dimension, and
therefore we have trdeg(ψ∗(f)) = m as required.

We will now prove that a random map has this property. The subspaces
here are the images of random linear maps, and therefore we use Lemma 3.1.6.
The fibre V of b is defined by the equations f1 = b1, . . . , fm = bm. By Bézout’s
theorem it has degree D. By Lemma 3.1.6, if we pick each aij from a subset S
of k not containing 0, the image of the map ψ properly intersects V with prob-
ability at least 1 − n3D/|S|. If we pick |S| = 3n3D, the required statement holds
with probability at least 2/3. We can sample from this set in time polynomial
in lognD, which is polynomial in n,di.

5.2.2 The Jacobian criterion
We now prove the Jacobian criterion. This is an efficient way of checking if
a given set of polynomials is algebraically independent when the underlying
field has characteristic 0 (or large enough).

Given polynomials f, define the Jacobian matrix J(f) as J(f)ij := ∂fi/∂xj.
This is a matrix with entries from the field k(x). The following statement of
the Jacobian criterion is from [PSS16], the references therein point to the places
where different cases were first proved.

Theorem 5.2.5 ([PSS16, Lemma 5]). Let f1, . . . , fm be polynomials of degree at
most d and transcendence degree r. If chark = 0 or chark > dr then trdeg(f) =
rankk(x) J(f).

To prove this, we will use the notion of tangent spaces. Given a point w
on a variety W, we can define ideal mw of k[W] consisting of all polynomials
vanishing on w. This ideal is maximal, since the quotient k[W]/mw is k, which
is a field. Further, the k[W]-module mw/m

2
w is annihilated by mw, and is thus

a k-vector space. The vector space mW/m
2
w is called the cotangent space at w,

and the dual (mw/m2
w)
∗ is called the tangent space. This is denoted by ΘW,w.

This definition of tangent spaces matches the more classical definition using
differentials in the case of complex numbers, but has the advantage of being
purely algebraic, and thus being well defined over the closures of finite fields.

Given a regular map φ : W → Z, we have an induced map φ∗ : k[Z] →
k[W]. Suppose φ(w) = z for some w ∈ W, z ∈ Z. Then φ∗(mz) ⊆ mw, and
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φ∗(m2
z) ⊆ m2

w. We thus get an induced map φ∗ : mz/m
2
z → mw/m

2
w, which

in turn induces a map between ΘW,w and ΘZ,z. We denote this map dwφ :
ΘW,w → ΘZ,z.

If W is an irreducible variety, then a point w ∈ W is called nonsingular if
dimW = rankΘW,w. The set of nonsingular points in a variety form a dense
open set (a proof can be found in [SR13, Section 1.4]). Further, we have the
following useful lemma.

Lemma 5.2.6 ([SR13, Theorem 2.3]). The dimension of the tangent space at a non-
singular point equals the dimension of the variety.

We now consider our setting. We have a map from An to Y defined by
the polynomials f. The tangent space at every point in An is a vector space of
dimension n since An is irreducible and nonsingular. The induced map dx0φf

at point x0 is given by the linear map J(f)(x0).
Given the above, we can prove one part of Theorem 5.2.5. Suppose the

Jacobian has rank r. If r < m, then we can restrict our attention to some r
linearly independent rows, and thus we can assume without loss of generality
that r = m. Let x0 be a point such that J(f)(x0) is rank r. The set of points where
this does not hold is a subvariety of An of dimension at most n − 1. The map
dx0φf then has image a linear space of rank m, whence the codomain, that is
ΘY,φvf(x0) must have rank at leastm. This shows that in a dense open subset of
Y, the tangent space has dimension at leastm, which shows that the dimension
of Y is at leastm.

The above proof does not require the characteristic of k to be large, and
indeed this requirement is only required for the other direction. For this, we
use the following lemma.

Lemma 5.2.7 ([SR13, Lemma 2.4]). Suppose chark = 0. Then there is a nonempty
open subset V ⊂ X such that dxF is surjective for x ∈ V .

While the above lemma assumes that the characteristic is zero, the proof
works as long as the characteristic is large enough, that is bigger than dr. The
above lemma immediately gives us the other direction of the Jacobian criterion:
since the map on the tangent spaces is surjective, it must be that for a dense
open subset of Y we have rankΘY,y 6 m. This implies that dim Y 6 m, as
required.

5.2.3 Functional dependence
Suppose we have dependent polynomials g1, . . . ,gr. In general, the depen-
dency of any gi on the rest will is nonlinear, and we cannot write say g1 =
H(g2, . . . ,gr) for some polynomial H. [PSS16] showed that while the above is
not possible, if we randomly shift the polynomials and allow power series, then
we can write a power of g1 as a function of g2, . . . ,gr. Formally, they proved
the following theorem.
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Theorem 5.2.8 ([PSS16, Theorem 10]). Let f be a set of polynomials of transcendence
degree r. Then there exist an algebraically independent subset {g1, . . . ,gr} ⊂ f of
polynomials such that for a random a ∈ kn and every fj, there is a power series hj ∈
k[[y1, . . . ,yr]] such that fj(x+a) = hj(g1(x+a) − g1(a), . . . ,gr(x+a) − gr(a)).

We now prove the result. Define the polynomial map φf with coordinate
functions (f1, . . . , fm). Given polynomials f, the shifted polynomials f(x+a)−
f(a) have the property that 0 is mapped to 0. Further, the variety correspond-
ing to the shifted polynomials, which we call Ya, is such that the origin of Ya is
the image of a in Y. If a is picked randomly, then f(a) is a general point, and
thus by shifting we have made the origin of Ya a general point. In particular,
in Ya, we can assume that the origin is a nonsingular point.

The ideal m := m0 in k[Y] is generated by y1, . . . ,ym. A subset of these
elements also then generate the vector space m/m2. Since the origin is nonsin-
gular, this vector space has dimension r. Let y ′1, . . . ,y ′r be the yj whose images
generate this vector space. The y ′i form a system of local parameters at the
origin. 5 Since the point is nonsingular, the local ring O0 has an isomorphic
inclusion into the power series ring generated by the y ′i. Each yj can thus be
written as a power series in the y ′i on Ya. Finally, given the power series for yj
in terms of y ′i, we can substitute fi(x + a) − fi(a) for yi everywhere to get a
power series for fj(x+ a) − fj(a). This completes the proof.

This proof essentially uses a Newton iteration like procedure to find the
power series. The result can also be proved directly using Newton iteration.
We provide this proof in appendix A

5.2.4 coAM and AM protocols
We now prove that the algebraic independence problem over finite fields is in
AM and in coAM. These results are by [GSS18], and is the result that motivates
this whole enterprise of polynomial maps.

We first provide an intuitive idea for why the result holds, in the special
case of m = n. In order to check for independence, Arthur can pick a random
point b in Am, and ask Merlin for a point a in An such that φf(a) = b. If the
polynomials are independent, then the image of the map φf is dense, and with
high probability such a a exists, and if the polynomials are dependent, then b
is not in the image, and no such a exists. In order to check for dependence,
Arthur can pick a point in a ∈ An, and ask Merlin for a list of points that
also map to φf(a). If the polynomials are dependent, then the fibres have
dimension at least 1, and therefore Merlin can produce an arbitrary number
of points with this property. If the polynomials are independent, then we can
prove a bound on the sizes of the fibres, and therefore Merlin can only produce
a list of bounded size.

Both the above protocols are incorrect, since the interactions are not poly-
nomial sized. The actual protocols will use the Sipser-Goldwasser protocol.

5The definition of systems of local parameters can be found in [SR13], in Chapter 2.
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Lemma 5.2.9. Let S ⊆ {0, 1}m be a set, such that membership in S can be verified in
AM. Let K be a number between 0 and 2m. If S is promised to have size either less
than K or greater than 2K, then there is an AM protocol to verify that the size of S is
at least 2K.

The setting of the above is very similar to our second protocol. The idea is
that instead of listing 2K members of S, which would have size exponential,
Arthur sends a random hash function to Merlin, and asks Merlin to send a
string which is not only a member of S, but also hashes to a particular randomly
chosen string. If S is large then this holds with high probability. The details
regarding the size of the hash function etc can be found in [AB09]. Standard
statements of the above require that membership in S can be NP, but the same
proof works when testing is done in AM, by adding two more rounds to the
protocol and using the result that constant round AM protocols are equivalent
to 2 round protocols.

If m > n the polynomials are always dependent. If m < n, then by The-
orem 5.2.4 we can replace the input variables by random linear combinations
of n variables. We assume therefore that m = n. Let f1, . . . , fn be the input
polynomials. We continue to use the notation from section 5.1.1, that is φf

denotes the polynomial map defined by the input polynomials, and Y is the
closure of the image of the map. We also use D to denote

∏n
i=1 di, where

di = deg fi. Since we are aiming for a protocol that runs in polynomial time,
it will be important to address the issues of representing elements of the field,
and performing operations on them. To this end, we assume that the inputs
fi have coefficients in the field Fq, and that operations in this field take unit
time. We will require operating in a field extension of degree e, where ewill be
fixed later. It suffices to ensure that e is polynomial in the inputs, in which case
operations in Fqe take polynomial time. We will still use k to denote the alge-
braic closure Fq. We will first show some facts about sets of independent and
dependent polynomials, then use them to state and prove the formal protocols.

Independent polynomials: Suppose polynomials f1, . . . , fn are algebraically
independent. For i = 1, . . . ,n let Ai be the annihilator of the polynomials
f1, . . . , fn, xi. Each Ai is a polynomial in n + 1 variables z1, . . . , zn+1. By the
Perron bound (Theorem 4.2.2), each Ai has weighted degree D.

Let a be a random point in An. Write Ai as a polynomial in the variable
zn+1 and consider the coefficient of the highest degree term. This is a poly-
nomial in the variables z1, . . . , zn, call this polynomial A ′i. It follows from the
degree bound on Ai that the weighted degree of A ′i is at mostD. Therefore the
polynomial Bi := A ′i(f1, . . . , fn) has degree at most D. Note that this polyno-
mial is nonzero since f are independent.

Suppose a is such that Bi(a) is nonzero for all i. Then the polynomials Ai
are nonzero after specializing the first n variables to fi(a). Since the equations
Ai(f(a), xi) holds on the fibre of φf(a), the different ith coordinates on the
fibre is bounded by the degree of this polynomial, which is D. The fibre itself
therefore has size at most Dn.

By the polynomial identity lemma, if a is picked randomly from Fqe , and
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if qe > D, then Bi(a) is nonzero with probability 1 −D/qe for a fixed i. By a
union bound, every Bi is nonzero with probability 1 − nD/qe, and in this case
the fibre of φf(a) has size at most Dn.

Dependent polynomials: Let f1, . . . , fn be a set of dependent polynomials.
LetA be an annihilator of f1, . . . , fn, which by Theorem 4.2.2 has degree at most
D. We use φ ′f to denote the restriction of φf to Fnqe . Since the coefficients of f
all lie in Fqe , the image of φ ′f also lies in Fnqe . Further, every point in the image
satisfies the polynomial A. Therefore, by the polynomial identity lemma the
image has size at mostDqe(n−1). We now crudely bound the number of points
a in the domain Fnqe such that φ ′f(a) has fibre of size at most 2Dn. Suppose T
is this set of points. The images of the elements of T , namely φ ′f(T), has size
at most Dqe(n−1), since this is a upper bound on the entire image space itself.
Each point inφ ′f(T) can have at most 2Dn elements in the fibre by the definition
of T , whence the size of T is at most 2Dn+1qe(n−1).

We can now prove the main statements. Informally, AM protocol for de-
pendence is as follows: Arthur picks a random point a in An. He then asks
Merlin to prove to him that there are at least 2D points in Fqe all lie in the fibre
of φf(a).

Theorem 5.2.10 ([GSS18]). Given polynomials f1, . . . , fn with coefficients in Fq,
there is an AM protocol to check if they are algebraically dependent.

Proof of Theorem 5.2.10. We will use the notation from the above discussion. Set
e such that qe > 6nDn+1. This requires e to be polynomial in logq,n,di, which
is polynomial in the input size.

Arthur picks a random point a in Fnqe . If the polynomials are dependent,
with probability at least 2/3 the fibre of the pointφf(a) has at least 2D elements
in Fnqe . If the polynomials are independent, with probability at least 5/6, the
fibre of the point φf(a) has less than D elements. The Goldwasser Sipser pro-
tocol Lemma 5.2.9 can therefore be used to provide an interactive AM proof for
dependence. Note that membership in the fibre can be checked in P itself.

Informally, AM protocol for independence is as follows: Arthur asks Merlin
to prove that there are more than 2Dqe(n−1) points in the image ofφ ′f. If Merlin
can prove this, Arthur accepts that the polynomials are independent.

Theorem 5.2.11 ([GSS18]). Given polynomials f1, . . . , fn with coefficients in Fq,
there is an AM protocol to check if they are algebraically independent.

Proof of Theorem 5.2.11. As before, set e such that qe > 6nDn+1. If the polyno-
mials are dependent, then there are only Dqe(n−1) points in the image of the
map φ ′f.

Suppose the polynomials are independent. Then the number of points in
a ∈ Fnqe that are such the fibres of φf(a) have size greater than Dn is at most
Dqe(n−1). By a counting argument, the number of points in the image of the
map is at least (qen−Dqe(n−1)/Dn, assuming the worst case where every other
point has fibre of size Dn. By our choice of e, this is greater than 2Dqe(n−1).
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The Goldwasser Sipser protocol Lemma 5.2.9 can therefore be used to pro-
vide an interactive AM proof for independence. Membership in the set (that is,
the images) can be checked in NP, with a point in the preimage acting as the
certificate.
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Chapter 6

Efficient algorithms for
polynomials with low
transcendence degree

In this chapter, we give algorithms for the Nullstellensatz and transcendence
degree computation that depend on the transcendence degree of the polyno-
mials. When the input polynomials are independent, the complexities of our
algorithms match known algorithms, but when the transcendence degree is
constant (or logarithmic, with constant degree polynomials), our algorithms
perform significantly better.

The workhorse of all our algorithms will be an algorithm by Lakshman and
Lazard [LL91] that can check if a variety is zero dimensional, given generators
for the ideal. This algorithm itself is fairly nontrivial, and we do not state or
prove the correctness of the algorithm, we just use it as a blackbox.

Certain radical membership methods were developed by Gupta [Gup14] in
his work on deterministic polynomial identity testing algorithms for restricted
depth-four circuits. The focus there however was on a deterministic algorithm
for the above problem. Further, he restricts his attention to systems where the
underlying field is C.

The results of this chapter are from [GS20]. We first state the three main
results of this chapter, and provide rough proof sketches. We then prove each
of these results.

6.1 Main results

Our algorithms will be Monte Carlo algorithms. We assume that our base field
k is algebraically closed, but our algorithms only use operations in the field in
which the coefficients of the inputs lie, which we denote by ki. For example,
ki might be Fp, and k would then be Fp. By time complexity we mean opera-
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tions in ki, where operations include arithmetic operations, finding roots, and
computing GCD of polynomials. Our results are valid for any field where the
above procedures are efficient, for example finite fields.

We have three main results. We relate the complexity of radical member-
ship, and the degree bounds in effective Nullstellensatz, to the transcendence
degree of the input set of polynomials. We do this by showing that given a
system of polynomials, we can reduce both the number of variables and the
number of polynomials to one more than the transcendence degree, while pre-
serving the existence and non-existence of common roots.

Before we state our results, we provide a motivating example. Suppose
f1, . . . , fm are polynomials in n variables. Suppose further that h1, . . . ,hn are
polynomials in r variables. Then the polynomials f1(h), . . . , fm(h) have tran-
scendence degree r. If this r is small, then our algorithms will be faster.

6.1.1 Radical membership
Our first result is an improvement in the complexity of radical membership.

Theorem 6.1.1 (Radical membership). Suppose f1, . . . , fm and g are polynomials,
in variables x1, . . . , xn, of degrees d1, . . . ,dm and dg respectively, given as blackboxes.
Suppose that trdeg(f1, . . . , fm) 6 r. Define d := max(maxi di,dg).

Then testing if g belongs to the radical of the ideal generated by f1, . . . , fm can be
done in time polynomial in n,m and dr, with randomness.

Remarks:
(1) The transcendence degree r can be much smaller than n, and this im-

proves the complexity significantly to dr from the prior dn [LL91]. On the
other hand, the usual reduction from SAT to HN results in a set of polynomials
with transcendence degree n, due to the presence of polynomials x2

i − xi (that
enforce the binary 0/1 values). It is therefore unlikely that this complexity can
be improved.

(2) We also show that the transcendence degree itself can be computed in
time dr, independent of the characteristic (Theorem 6.1.3). In the above state-
ment therefore, we can always pick r = trdeg(f), and we can assume that r is
not part of the input.

(3) The transcendence degree is upper bounded by the number of poly-
nomials, and therefore we generalize the case of few polynomials. It is sur-
prising if one contrasts this case with that of ideal membership— where the
instance with three polynomials (i.e. tr.deg=3) is as hard as the general instance
making it EXPSPACE-complete. For completeness, we present a reduction of
the general ideal membership problem to the case of membership with ideals
generated by three elements here. This transformation is from [Sap19]. Sup-
pose g ∈ 〈f1, . . . , fm〉 is an instance of ideal membership. This is equivalent to
zm1 z

m
2 g ∈

〈
zm+1

1 , zm+1
2 ,

∑
i fiz

i
iz
m−i
2

〉
. Here, z1, z2 are new variables.
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6.1.2 Nullstellensatz certificates
Next, we show that taking constant-free random linear combinations preserves
the zeroset of the polynomials, if the number of linear combinations is at least
one more than the transcendence degree. This allows us to get bounds on the
Nullstellensatz certificates that depend on the transcendence degree.

Theorem 6.1.2 (Effective Nullstellensatz). Suppose f1, . . . , fm are polynomials in
x1, . . . , xn, of degrees d1 > · · · > dm respectively, with an empty zeroset. Suppose
further that trdeg(f) = r.

Then, there exist polynomials hi such that deg fihi 6
∏r+1
i=1 di that satisfy

∑
fihi =

1.

Remark: The prior best degree-bound for the case of small transcendence de-
gree is

∏m
i=1 di [Jel05]. Our bound is significantly better when the transcen-

dence degree r is smaller than the number of polynomialsm.

6.1.3 Computing transcendence degree
Finally, we show that the transcendence degree of a given system of polyno-
mials can be computed in time polynomial in dr (and m,n), where d is the
maximum degree of the input polynomials, and r is their transcendence de-
gree. The algorithm is output-sensitive in the sense that the time-complexity
depends on the output number r.

Theorem 6.1.3 (Computing transcendence degree). Given as input polynomials
f1, . . . , fm, in variables x1, . . . , xn, of degrees at most d, we can compute the transcen-
dence degree r of the polynomials in time polynomial in dr,n,m.

Remark: In the case when the characteristic of the field is greater than dr, there
is a much more efficient (namely, randomized polynomial time) algorithm us-
ing the Jacobian criterion discussed in the previous chapter [BMS13]. The al-
gorithm presented here is useful when the characteristic is ‘small’; whereas the
previous best known time-complexity was> dr

2
if one directly implements the

PSPACE algorithm.

6.1.4 Proof ideas
We prove brief proof ideas for each of the above three theorems before provid-
ing the complete proofs.

Proof idea for Theorem 6.1.1: We first use the Rabinowitsch trick to reduce
to HN: the case g = 1. Next, we perform a random linear variable reduction.
We show that replacing each xi with a linear combination of r new variables zj
preserves the existence of roots. This is done by using the fact that a general
linear hyperplane intersects a variety properly (Corollary 3.1.4). Once we are
able to reduce the variables, we can interpolate to get dense representation of
our polynomials, and invoke existing results about testing nonemptiness of
varieties (Theorem 6.2.1).
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Proof idea for Theorem 6.1.2: For the second theorem, we show that random
linear combinations of the input polynomials, as long as we take at least r + 1
many of them, preserve the zeroset. For this, we study the image of the poly-
nomial map defined by the polynomials. We will use Corollary 3.1.4 and The-
orem 3.2.6 for this. In order to get the degree bounds, we must allow these
hyperplanes to depend on fewer variables, and allow their equations to be con-
stant free. Once this is proved, we can use an existing bound on the Nullstel-
lensatz certificates for the new polynomials to obtain a bound for the original
polynomials.

Proof idea for Theorem 6.1.3: The image of the polynomial map defined by the
polynomials is such that the general fibre has codimension equal to the tran-
scendence degree. We first show that a random point, with coordinates from
a subset which is not ‘too large’, satisfies this property. In order to efficiently
compute the dimension of this fibre, we take intersections with hyperplanes;
and apply Corollary 3.1.4 and Theorem 6.2.1.

6.2 Proofs of main results

We will need the following algorithm for checking if a variety has dimension 0.
The statement assumes that the polynomials are given in the monomial (also
called dense) representation. We only state the part of the theorem that we re-
quire. We note that the below theorem itself invokes results from [Laz81], sec-
tion 8 of which proves that the operations occur in a field extension of degree
at most dn of the field ki.

Theorem 6.2.1. [LL91, Part of Thm.1] Let f1, . . . , fm be polynomials of degree at
most d in n variables. There exists a randomized algorithm that checks if the di-
mension of the zeroset of f1, . . . , fm is 0 or not, in time polynomial in dn,m. The
error-probability is 2−d

n .

In the special case when r is a constant, we can alternatively use the dimen-
sion computation result of [GHS93]. The complexity is slightly worse, but the
proof is a bit simpler.

We will also continue to use notation from section 5.1.1, which we recall
here. Given polynomials f1, . . . , fm, we use φf to denote the map An → Am
with coordinate functions fi. We use Y to denote the closure of the image of
this map.

6.2.1 Proof of radical membership
Proof of Theorem 6.1.1. We first assume g = 1, which is the Nullstellensatz prob-
lem HN. Define D :=

∏m
i=1 di, and V := V(〈f〉). The set of common zeroes of

these polynomials is the fibre of the point 0 under the map φf. The problem
HN is thus equivalent to testing if a particular fibre of a polynomial map is
nonempty. By the fibre dimension theorem (Theorem 2.3.4), the codimension
of the zeroset—if it is nonempty—is bounded above by the dimension of the
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image of the map, which by Lemma 5.1.2 is r. The zeroset V is therefore either
empty, or has dimension at least n−r. Assume that V is nonempty. By repeated
applications of Bézout’s theorem (Theorem 2.3.5), degV 6 D. Let S be a sub-
set of the underlying field ki (or an extension) of size at least 6(n − r)D that
does not contain 0. We can sample from S in time polynomial in d,n,m, since
S has size exponential in these parameters. Further, if we were required to go
to an extension to form S, the degree of the extension would be polynomial
in d,n,m. Pick n − r random linear polynomials `1, . . . , `n−r with coefficients
from S, and call their zero sets H1, . . . ,Hn−r respectively. By Corollary 3.1.4,
we get dimV ∩H1 ∩Hn−r > 0 with probability at least 2/3.

Therefore, when the polynomials f have nonempty zeroset and are restricted
to the r dimensional affine subspace ∩Hi, the new zeroset has dimension at
least 0, and in particular is nonempty. If the zeroset of the polynomials was
empty to begin with, then the restriction to the linear subspace also results in
an empty zeroset.

This restriction can be performed by a variable reduction, as follows. Treat-
ing An as a vector space of dimension n over k, let H0 be the linear subspace
corresponding to the affine subspace H := ∩Hi. The space H0 has dimension r,
and hence has basis a1, . . . ,ar. Further, let vector b be such thatH = H0+b. De-
fine linear forms c1, . . . , cn in new variables z1, . . . , zr as ci :=

∑r
j=1 ajizj + bi,

where aji is the ith component of aj. Define f ′i := fi(c1, . . . , cn). Then by con-
struction, the zeroset of f ′1, . . . , f ′m is equal to V∩(∩Hi). Further, deg f ′i = deg fi,
and these polynomials are in r variables. Also, the construction of these f ′i can
be done in a blackbox manner, given blackboxes for fi. This construction takes
time polynomial inm, r,n.

We now repeatedly invoke Theorem 6.2.1 to check if f ′is have a common
root. First we must convert them to a sparse representation. The polynomial
f ′i has at most

(
r+di

r

)
many monomials, and therefore we can find every coeffi-

cient in time polynomial in
(
r+di

r

)
by simply solving a linear system. Applying

Theorem 6.2.1, we can test whether the dimension of the zeroset of f ′1, . . . , f ′m
is 0 or not. However, we want to check if the dimension is at least 0. For this,
we randomly sample r more hyperplanes H ′1, . . . ,H ′r as in the previous part
of the proof, this time in the new variables z1, . . . , zr. Let V ′ be the zeroset of
f ′1, . . . , f ′m. We first use Theorem 6.2.1 to check if V ′ has dimension 0. If not, then
we check if V ′ ∩ H ′1 has dimension 0. If not, then we check V ′ ∩ H ′1 ∩ H ′2, and
so on. We return success if any one of the above iterations returns success (im-
plying that the corresponding variety has dimension 0). By Lemma 3.1.2 with
high probability each intersection reduces the dimension by 1. If V ′ originally
had dimension r ′, then after intersecting with r ′ hyperplanes, the algorithm of
Theorem 6.2.1 returns success. If V ′ was empty, then the algorithm does not
return success in any of the above iterations. This allows us to decide if V ′ has
dimension at least 0. Finally, using the fact that the dimension of the zeroset of
f ′1, . . . , f ′m is at least 0 if and only if dimV > 0, we get the required algorithm
for HN.

We now estimate the time taken. Computing the dense representation takes
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time polynomial in dr and m. Each of the at most r applications of Theo-
rem 6.2.1 also take the same amount of time. The sampling steps take time
polynomial in lognD (in turn polynomial in d,m) and only requires an ex-
tension of degree polynomial in n and logd. The total time taken is therefore
polynomial inm,dr.

Now assume that g is an arbitrary polynomial. We reduce the problem
to the case of g = 1 using Rabinowitsch trick [Rab30], as in the proof of the
equivalence of Theorem 4.1.1 and Theorem 4.1.2. The polynomial g belongs
to the radical of the ideal 〈f〉 if and only if the polynomials f, 1 − yg have no
common root (here y is a new variable). Further, if f have transcendence degree
r, then the set f, 1−yg has transcendence degree r+ 1. We therefore reduce the
radical membership problem to HN problem, with a constant increase in the
transcendence degree, number of polynomials and the number of variables. By
the result in the previous paragraph, we can solve this in time polynomial in
n,m and dr.

6.2.2 Proof of improved Nullstellensatz certificates
We first prove that by taking random linear combinations of the input poly-
nomials, we can reduce the number of polynomials to be one more than the
transcendence degree while preserving the existence of roots. This reduction
gives degree bounds for the Nullstellensatz certificates. Note that this reduc-
tion does not help in the above radical membership procedure, since we will
only be saving a factor in m if we reduce the number of polynomials. This
theorem can be seen as an extension of [Hei83, Lemma 3].

Theorem 6.2.2 (Generator reduction). Let f1, . . . , fm be polynomials in x1, . . . , xn
of degrees atmost d, and of transcendence degree r. Let g1, . . . ,gr+1 be polynomials
defined as gi :=

∑m
j=i cijfj, where each cij is randomly picked from a finite subset S

of k. Then with probability at least 1 − d(r+1)m/|S|, we have V(〈f〉) = V(〈g〉).

Proof of Theorem 6.2.2. We use y1, . . . ,ym to denote the coordinate functions of
Am, the space in which Y lies. By Lemma 5.1.2, Y has dimension r and de-
gree at most D := (maxi di)r. Let `1, . . . , `r+1 be the linear polynomials `i :=∑m
j=i cijyj. Further, let L be the map from Am to Ar with coordinate functions

`1, . . . , `r, and let M be the map from Am → Ar+1 with coordinate functions
`1, . . . , `r+1.

By Theorem 3.2.6, with probability at least 1 − (r + 1)D/|S|, the map L
is Noether normalizing for Y. Suppose this is the case. By Lemma 3.2.4, L
when restricted to Y is surjective onto Ar and every point has finite fibres.
Let Q be the fibre of 0 under L when restricted to Y. We want to bound
the size of Q. The image Ar is normal, and hence |Q| is bounded by the
degree of the map [SR13, Theorem 2.28]. Here, by the degree of the map
we mean the degree of k(Y) over the pullback L∗(k(Ar)). Note that k(Y) =
k(f1, . . . , fm). Applying the same isomorphism to L∗(k(Ar)) = k(`1, . . . , `r) we
get k(`1(f), . . . , `r(f)). We therefore need to compute the degree of the field ex-
tension k(f1, . . . , fm)/k(`1(f), . . . , `r(f)), which is algebraic since the extension
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k[f1, . . . , fm]/k[`1(f), . . . , `r(f)] is integral. By Perron’s bound, for each i there
exists an annihilator of fi, `1(f), . . . , `r(f) of degree at most dr+1. The degree of
the extension, and hence |Q|, is bounded by d(m+1)r.

No point ofQ other than 0 has all of the lastm− r coordinates as zero. This
follows from the fact that L−1(0) is a linear space of dimension m − r, and its
intersection with yr+1 = yr+2 = · · · = ym = 0 has dimension 0. Consider now
the linear form `r+1. For every 0 6= q ∈ Q, the probability that `r+1(q) = 0 is at
most 1/|S|. Therefore, with probability at least 1 − d(r+1)m/|S|, the polynomial
`r+1 is nonzero on every nonzero point of Q.

Consider the polynomials g1, . . . ,gr+1, and let φg be the polynomial map
An → Ar+1 with coordinate functions gi. By the choice of `i in the previous
paragraph, the map φg is exactly the composition of the map φf : An → Am
with M : Am → Ar+1. Let Q be as defined earlier, the fibre of 0 under L.
By construction, the set M−1(0) is a subset of Q. But since the polynomial
`r+1 is nonzero on every nonzero point of Q, the setM−1(0) consists only of 0.
Therefore,φ−1

f (M−1(0)) = φ−1
f (0). Sinceφg =M◦φf we getφ−1

g (0) = φ−1
f (0);

which is the same as V(〈f〉) = V(〈g〉). The probability bound follows from a
union bound.

That we pick the linear combinations so that the first involves all polynomi-
als, the second involves all except f1, the third involves all except f1, f2 and so
on is crucial for the improvement in the degree bounds for the Nullstellensatz
certificates. We now prove the second main result of the chapter.

Proof of Theorem 6.1.2. Using Theorem 6.2.2, there exists polynomials g1, . . . ,gr+1
of degrees d1, . . . ,dr+1 that are linear combinations of f1, . . . , fm that do not
have a common root. By Theorem 4.2.1, there exist h ′1, . . . ,h ′r+1 with deggih ′i 6∏r+1
i=1 di such that

∑
gih

′
i = 1. In this equation, substituting back f1, . . . , fm for

each gi we get the equation
∑
fihi = 1 with the required degree bound.

6.2.3 Algorithm for computing transcendence degree
We now give an algorithm to compute the transcendence degree. For this, we
use the effective version of the fibre dimension theorem.

Lemma 6.2.3. Let h1, . . . ,hm be polynomials of degree at most d in n variables, and
let W be the Zariski closure of the image of the map h with coordinates hi. Let S ⊂ k
be of size 6ndn. If a1, . . . ,an are randomly picked from S, then with probability at
least 5/6, the fibre of (h1(a), · · · ,hm(a)) has codimension exactly dimW.

Proof. First assume that the hi are algebraically independent. Then W = Am.
Let the input variables be labelled such that x1, . . . , xn−m,h1, . . . ,hm are alge-
braically independent, and let Aj(z0, z1, . . . , zn−m,w1, . . . ,wm) be the (min-
imal) annihilator of xj over this set of variables, that is Aj(xj, x1, . . . , xn−m,
h1, . . . ,hm) = 0. By the proof of the fibre dimension theorem (Theorem 2.3.4), a
sufficient condition for point a1, . . . ,an to be such that h(a) has fibre of dimen-
sion exactly n − m is that Aj(xj, x1, . . . , xn−m,h1(a), . . . ,hm(a)) is a nonzero
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polynomial. The polynomial Aj, when treated as polynomials in variables
z0, . . . , zn−m with coefficients in k[w1, . . . ,wm] are such that the leading mono-
mial has coefficient a polynomial in w1, . . . ,wm of weighted-degree at most∏m
i=1 di (by Theorem 4.2.2). By the polynomial identity lemma if we pick each

ai randomly from a set of size 6
∏m
i=1 di then, with probability at least 5/6,

none of the polynomials Aj(xj, x1, . . . , xn−m, h1(a), . . . ,hm(a)) is zero. In this
case, the codimension of the fibre of h(a) is exactlym.

In the general case, the hi may be algebraically dependent, andW is a sub-
variety of Am. Suppose dimW = trdeg((h)) =: s. Then we take s many ran-
dom linear combinations gi of the hi, as in the proof of Theorem 6.1.1. The map
defined by the gi is dense in As and therefore the gi (i ∈ [s]) are algebraically
independent. By the previous paragraph, point a picked coordinatewise from
S is such that the fibre of g(a) has codimension s. The fibre of h(a) is a subset
of the fibre of g(a), and therefore it has codimension at least s. Finally, by the
fibre dimension theorem (Theorem 2.3.4) the fibre has codimension at most s,
whence the fibre of h(a) has codimension s.

We can now use this to compute the transcendence degree.

Proof of Theorem 6.1.3. For each i from 1 to n, we do the following steps. We
iterate till i reaches the transcendence degree r of the m polynomials. In the
i-th iteration, we intersect An with n− i random hyperplanes `1, . . . , `n−i, as in
the proof of Theorem 6.1.1. Here, the coefficients are picked from a set S of size
at least n · 18

∏m
i=1 di. We therefore reduce the problem to i variables.

Randomly pick point a where each coordinate (of the n many) is picked
from S. By Lemma 6.2.3, with error-probability 6 1/6n, the point f(a) has
intersected fibre of dimension (n − r) − (n − i) = (i − r). We need to check
this algorithmically, which is done by interpolating the polynomials f after hy-
perplane intersections, and then using Theorem 6.2.1. If the intersected fibre
dimension is zero, we have certified that the transcendence degree is r; so we
halt and return i as output. If not, we move to the next i 7→ i + 1. The in-
terpolation step above is performed by solving a linear system which has size
polynomial in di which is the count of the monomials of degree at most d in i
variables.

For i < r, with probability 6 1/6n, the fibre of f(a) has an empty inter-
section with `1, . . . , `n−i and hence gets verified by Theorem 6.2.1. By a union
bound therefore, with error-probability 6 1/6, the above algorithm gives the
correct answer. For each i, the time complexity of the above steps is polyno-
mial in di,m, which is the time taken for the interpolation step and to verify
zero-dimension of the fibre. Therefore the algorithm as a whole takes time
polynomial in dr,n,m as claimed.
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Chapter 7

Conclusion

In this thesis, we first provided exposition of some results in commutative al-
gebra and algebraic geometry, namely Noether normalization, hyperplane in-
tersection and the Nullstellensatz. We proved effective versions of most of the
results we discussed.

We proved degree bounds in existence statements such as the Nullstellen-
satz. We also explicitly controlled bad choices when picking random hyper-
planes to intersect a variety, and random linear maps to Noether normalize.

We then discussed the algebraic independence problem, and framed it as
a problem in computational algebraic geometry. We used this view to give
alternative proofs of a number of known results. Finally, we used all of the
above to give improved algorithms for radical membership and transcendence
degree computation, and improved bounds for Nullstellensatz certificates in
the special case of polynomials with low transcendence degree.

There are some natural directions in which the above can be extended,
which we list.

• We can try to further improve the dependency on the transcendence de-
gree in some of the above algorithms. For example, our algorithms are
polynomial time when either the transcendence degree of the polynomi-
als is constant, or when the transcendence degree is logarithmic and the
degrees of the polynomials are constant. We can look for algorithms that
are polynomial time when the transcendence degree is logarithmic irre-
spective of the degree. There is some evidence that the above results can-
not be greatly improved, since the Nullstellensatz problem is NP hard.

• Another natural problem is proving that the Nullstellensatz is in the poly-
nomial hierarchy in the finite characteristic case. This result holds (as-
suming the GRH) in Z, but the methods use do not extend to fields of
finite characteristic.

• Finally, another open problem is to come up with a randomized polyno-
mial time algorithm for computing the transcendence degree. This prob-
lem is unlikely to be NP hard, since it is in AM ∩ coAM, and given that
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the characteristic 0 case is in BPP, it seems likely that there exists a BPP
algorithm for the finite field case.
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Appendix A

Functional dependence and
Newton iteration

In this appendix, we look at a proof of part of the functional dependence crite-
rion via Newton Iteration. This vastly simplifies the proof. It also gives an idea
of why the random shift is necessary, and the role of the inseparability.

Assume that we are given polynomials f1, . . . , fn ∈ k[x]. Assume that the
f have transcendence degree n. Let g be any polynomial in F[x]. We know
that the transcendence degree of {f,g} will also be n, and thus g depends alge-
braically on the f. Let A be an annihilator of {f,g}. By definition, A(f,g) = 0.
We will also look at A as a polynomial in one variable, say y, which is the vari-
able in which we plug in g. We assume that A is an annihilator with minimum
degree in y. We will now show that after a random shift, we can write g as a
power series in f.

We use the following formulation of Newton iteration from [DSS18], which
is a slight modification of Theorem 2.31 from [BCS97]. For completeness, we
provide a proof of this lemma in the last section.

Lemma A.0.1 (Newton Iteration). Let F(x,y) ∈ k[[x]][y] be a polynomial in y
with coefficients power series in k[[x]]. Suppose µ is such that F(0,µ) = 0 and also
F ′(0,µ) 6= 0, where F ′ is the derivative with respect to the last variable. There is then
a unique element Y ∈ k[[x]] with constant term µ such that F(x, Y) = 0. We also have

yt+1 = yt −
F(x,yt)
F ′(x,yt)

,

such that Y ≡ yt (mod 〈x〉2
t

).

In the above lemma, it is essential that F is a polynomial in y. This allows
us to evaluate it at power series with non-zero constant term. In general, if F
were a power series in y, we would require µ = 0.

In order to get g as a power series in f, we will try and use NI to get a
power series in x, and then try and argue that what we get is actually a power
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series in f. First note that if g depended inseparably on f, then A ′ would be
an identically zero polynomial. In this case, we will not be able to satisfy the
conditions of the lemma. Thus we assume that g depends separably on f. In
general, this can be obtained by replacing g by a power gp

i

. Therefore we can
assume now that g depends separably on f.

A possibly bigger issue is the fact that if the fi have non-zero constant terms,
then power series in fi are not valid elements in F[[x]]. To fix this, we apply the
shift operator, to remove the constant term: Define Hfi := fi(x+z)−fi(z), and
similarly for Hg = g(x + z) − g(z). For now we treat the z as part of the base
field, that is, we switch from working with k to working with k(z). Eventually
we show that we can replace z by an arbitrary element from kn, and the proof
will continue to hold. We haveA(Hf+f(z),Hg+g(z)) = A(f(x+z),g(x+z)) =
0. We define B(x,y) = A(Hf + f(z),y + g(z)) = A(f(x + z),y + g(z)). The
polynomial B has root y = Hg. Now note that B(0, 0) = A(f(z),g(z)) = 0,
since A is an annihilator1 . Further, consider B ′(0, 0). We have

B =

d∑
i=0

ci(y+ g(z))i,

where the ci are polynomials in x and z, and d is the degree with respect to y.
Differentiating, we get

B ′ =

d∑
i=0

ici(y+ g(z))i−1.

When evaluated at (0, 0), each of the ci is a polynomial in fi(z). Therefore,
B ′(0, 0) is a polynomial in fi(z) and g(z), of degree d − 1. As a polynomial
in z, this is non-zero: if it were not, we would have an annihilator for f,g of
degree d − 1 in y, contradicting the assumption that A is the annihilator with
minimum y degree. In general, when we replace z with a vector of random
elements from F, we can still say that B ′(0, 0) 6= 0 (for most choices), by using
the polynomial identity lemma.

We have now satisfied the conditions of the lemma. The lemma then gives
us a root Y ∈ k[[x]] such that B(x, Y) = 0. Further, this is the unique root with
constant term 0. But we know that Hg is also a root of B(x,y) with constant
term 0. Thus it must be that Y = g. All that is left to show is that we can actually
get Y as a power series in Hf, since the lemma only promises us a power series
in x. For this, we look at the series yt whose limit is Y. We will inductively
show that yt can be written as a power series in Hf for all t.

The base case is t = 0. We have y0 = 0, and thus vacuously y0 is a power
series in Hf. Assume inductively that yt is a power series in Hf. First consider
B(x,yt) = A(Hf + f(z),yt + g(z)). The first argument, Hf + f(z) is vacuously

1 The choice of setting µ = 0 is motivated by the fact that we know that the root Hg has no
constant term. We also know that this is not a repeated root, due to minimality and separability
assumption. The calculation of B(0, 0) and B ′(0, 0) thus also act as a sort of sanity check.
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a power series in Hf, and by the inductive hypothesis, so is the second ar-
gument yt + g(z). Thus B(x,yt) is also a power series in Hf. Now consider
(B ′(x,yt))

−1. The term B ′(x,yt) is a power series in Hf by an argument simi-
lar to the one above. In this form B ′(x,yt) must have a nonzero constant term,
since the constant term will be exactly B ′(0, 0), which is non-zero by assump-
tion. Thus we have B ′(x,yt) = c0 + D(Hf), where c0 6= 0, and D is a power
series with no constant term. But then we have

1
B ′(x,yt)

=
1

c0 +D(Hf)

=
1
c0

1
1 −D1(Hf)

(Setting D1 = −D/c0)

=
1
c0

(
1 +D1(Hf) +D2(Hf)2 + . . .

)
This converges since each D1(Hf)i has x-adic valuation at least i. It is also
a power series in Hf. The product B(x,yt)(B ′(x,yt))

−1 is thus also a power
series in Hf, and so is yt+1. Note that c0 is a non-zero element in F(z), and by
Schwartz Zippel, it continues to remain non-zero after we replace z by random
field elements. It is crucial that the term c0 is independent of t, since otherwise
the random choice of z would have had to be such that a countable number of
equations are non-zero. This completes the proof.

We now prove the version of Newton iteration used.

Proof of Lemma A.0.1. In order to see the existence of Y, we plug in a power se-
ries with unknown coefficients, equate with zero, and compare coefficients on
both sides. This gives us a system of linear equations, with unknowns corre-
sponding to monomials, and equations also corresponding to monomials. In
particular, let Y =

∑
cex

e where the sum runs over all N valued vectors of
length n. We will first show that c0 = µ satisfies the equation corresponding
to the constant term. Then we will use the yt described in the statement of the
lemma, to get coefficients ce in the following way: we will look at some yt,
and use the coefficients of monomials up to degree 2t as the values for the cor-
responding variables in our system. We will show that these satisfy the equa-
tions corresponding to the monomials of degree at most 2t. Note that these
equations do not have any other variables. This is equivalent to showing that
F(x,yt) ≡ 0 (mod 〈x〉2

t

). When showing that the yt satisfy these equations,
we will additionally show that the values for the variables that we already had
from yt−1, namely those for the coefficients of degree at most 2t−1, are the same
as those in yt−1. More succinctly, we will show that yt ≡ yt−1 (mod 〈x〉2

t−1
).

As hinted, the proof will proceed by induction on t.
First we show the base case, namely t = 0. Consider the equation F(x, Y) =

0. The constant term in this expression is F(0, c0). By assumption, since F(0,µ) =
0, we can set c0 = µ. This also ensures we satisfy the requirement of our Y hav-
ing constant term µ. In the notation of the question, we also get y0 = µ. The
statement about equality of coefficients holds vacuously.

57



Assume now that the statement holds for t. First note that F(x,yt) ≡ F(x,y0)
(mod 〈x〉), since yt ≡ y0 (mod 〈x〉) by the induction hypothesis. This implies
that F ′(x,yt) has constant term F ′(0,µ), which is non-zero by assumption. This
implies that F ′(x,yt) is invertible in the power series ring, and that the expres-
sion for yt+1 is well defined. Further, by induction, we have that F(x,yt) ≡ 0
(mod 〈x〉2

t

). This implies that yt+1 − yt ≡ 0 (mod 〈x〉2
t

), proving the con-
sistency requirement. Now we compute P(x,yt+1). For this, we will use the
Taylor expansion. We have

F(x,yt+1) = F

(
x,yt −

F(x,yt)
F ′(x,yt)

)
= F(x,yt) +

F ′(x,yt)
1!

(
−
F(x,yt)
F ′(x,yt)

)
+
F ′′(x,yt)

2!

(
−
F(x,yt)
F ′(x,yt)

)2

+ . . .

On the right hand side, the first two summands cancel. All other summands,
and hence the entire right hand side, are 0 (mod 〈x〉2

t+1
). This shows that yt+1

has the required property.
Finally we must show that Y is unique. This follows from the fact that µ is

not a repeated root of F(0,y).
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